Description

"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"

 

Input

The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
 

Output

For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
 

Sample Input

4
10
20
 

Sample Output

5
42
627

这是一个整数划分,母函数是构造了一个多项式的乘法,然后指数为n的一项的系数就是划分数。效率是n*n*n。

递推稍微快一点,采用二位递推,p[i][j]表示i可以划分成j个数的划分个数。那么n的划分数就是sum(p[n][i])。

对于p[i][j]:

考虑最小的数,如果最小的数是1,就不再考虑这个1,那么就是p[i-1][j-1]。

如果最小数不是1,那么可以对每个数都减一,那么就是p[i-j][j]。

所以 p[i][j] = p[i-1][j-1]+(i-j >= 0 ? p[i-j][j] : 0);

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <algorithm>
#define LL long long using namespace std; int n, p[][]; void work()
{
memset(p, , sizeof(p));
p[][] = ;
for (int i = ; i <= n; ++i)
for (int j = ; j <= n; ++j)
p[i][j] = p[i-][j-]+(i-j >= ? p[i-j][j] : );
LL ans = ;
for (int i = ; i <= n; ++i)
ans += p[n][i];
printf("%I64d\n", ans);
} int main()
{
//freopen("test.in", "r", stdin);
while (scanf("%d", &n) != EOF)
work();
return ;
}

ACM学习历程—HDU1028 Ignatius and the Princess III(递推 || 母函数)的更多相关文章

  1. ACM学习历程—HDU1028 Ignatius and the Princess(组合数学)

    Ignatius and the Princess Description        "Well, it seems the first problem is too easy. I w ...

  2. ACM学习历程—51NOD 1412 AVL树的种类(递推)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1770 这是这次BSG白山极客挑战赛的B题.设p(i, j)表示节点个数为 ...

  3. ACM学习历程—SNNUOJ 1116 A Simple Problem(递推 && 逆元 && 组合数学 && 快速幂)(2015陕西省大学生程序设计竞赛K题)

    Description Assuming a finite – radius “ball” which is on an N dimension is cut with a “knife” of N- ...

  4. ACM学习历程——HDU4814 Golden Radio Base(数学递推) (12年成都区域赛)

    Description Golden ratio base (GRB) is a non-integer positional numeral system that uses the golden ...

  5. hdu acm 1028 数字拆分Ignatius and the Princess III

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  6. HDU1028 Ignatius and the Princess III 【母函数模板题】

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  7. hdu1028 Ignatius and the Princess III(递归、DP)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  8. hdu1028 Ignatius and the Princess III

    这是道典型的母函数的题目,可以看看我的母函数这一标签上的另一道例题,里面对母函数做了较为详细的总结.这题仅贴上代码: #include"iostream" using namesp ...

  9. HDU-1028 Ignatius and the Princess III(生成函数)

    题意 给出$n$,问用$1$到$n$的数字问能构成$n$的方案数 思路 生成函数基础题,$x^{n}$的系数即答案. 代码 #include <bits/stdc++.h> #define ...

随机推荐

  1. g2o 初始化

    typedef g2o::BlockSolver< g2o::BlockSolverTraits<,> > Block; // pose 维度为 6, landmark 维度为 ...

  2. Cookie的写入,和读取

    public static void SetLoginGmameInfo(string  uid, string sid, string timestring, string sign)       ...

  3. Anaconda2

    Anaconda 是一个打包的python,一次把好多需要的包都安装好了.对于Python2.7把PyQt5都弄好了,不需要自己来编译! 看看这个 http://conda.pydata.org/do ...

  4. C# 杀掉后台进程

    var p = Process.GetProcessesByName("WINWORD"); if (p.Any()) { for (int i = 0; i < p.Len ...

  5. JS——特效秀

    0.凛冬将至,用几款特效暖暖身    ①.tab图片切换: ②.索引图片切换:    ③.统计图: ④.滚动条分页:   1.Canvas跳动彩球时间动画特效  

  6. implode 函数 把数组拼接成字符串

    $array( '0'=>1, '1'=>5, '2'=>5 ); $str=imploade(',',$array); echo str;//输出1,5,3

  7. 数据挖掘、目标检测中的cnn和cn---卷积网络和卷积神经网络

    content 概述 文字识别系统LeNet-5 简化的LeNet-5系统 卷积神经网络的实现问题 深度神经网路已经在语音识别,图像识别等领域取得前所未有的成功.本人在多年之前也曾接触过神经网络.本系 ...

  8. [python学习] 简单爬取图片站点图库中图片

    近期老师让学习Python与维基百科相关的知识,无聊之中用Python简单做了个爬取"游讯网图库"中的图片,由于每次点击下一张感觉很浪费时间又繁琐.主要分享的是怎样爬取HTML的知 ...

  9. “volatile”这个关键字

    我们经常使用“volatile”这个关键字,它是什么意思? 解析:volatile问题.当一个对象的值可能会在编译器的控制或监测之外被改变时,例如一个被系统时钟更新的变量,那么该对象应该声明成vola ...

  10. 【BZOJ2406】矩阵 二分+有上下界的可行流

    [BZOJ2406]矩阵 Description Input 第一行两个数n.m,表示矩阵的大小. 接下来n行,每行m列,描述矩阵A. 最后一行两个数L,R. Output 第一行,输出最小的答案: ...