安装栅栏

在一个二维的花园中,有一些用 (x, y) 坐标表示的树。由于安装费用十分昂贵,你的任务是先用最短的绳子围起所有的树。只有当所有的树都被绳子包围时,花园才能围好栅栏。你需要找到正好位于栅栏边界上的树的坐标。

示例 1:

输入: [[1,1],[2,2],[2,0],[2,4],[3,3],[4,2]]

输出: [[1,1],[2,0],[4,2],[3,3],[2,4]]

解释:

示例 2:

输入: [[1,2],[2,2],[4,2]]

输出: [[1,2],[2,2],[4,2]]

解释:

即使树都在一条直线上,你也需要先用绳子包围它们。

注意:

  1. 所有的树应当被围在一起。你不能剪断绳子来包围树或者把树分成一组以上。
  2. 输入的整数在 0 到 100 之间。
  3. 花园至少有一棵树。
  4. 所有树的坐标都是不同的。
  5. 输入的点没有顺序。输出顺序也没有要求。

Graham扫描法

我给了它一个新名字,边界扫描法。用到的性质和解法二密切相关,首先也需要对某个维度进行从小达到排序。这样我们就能确定其中一个顶点了,我们选择横坐标最小的那个点作为整个坐标的原点。

算法步骤:

1. 把所有点放在二维坐标系中,则纵坐标最小的点一定是凸包上的点,如图中的P0。

2. 把所有点的坐标平移一下,使 P0 作为原点,如上图。

3. 计算各个点相对于 P0 的幅角 α ,按从小到大的顺序对各个点排序。当 α 相同时,距离 P0 比较近的排在前面。例如上图得到的结果为 P1,P2,P3,P4,P5,P6,P7,P8。我们由几何知识可以知道,结果中第一个点 P1 和最后一个点 P8 一定是凸包上的点。

(以上是准备步骤,以下开始求凸包)

以上,我们已经知道了凸包上的第一个点 P0 和第二个点 P1,我们把它们放在栈里面。现在从步骤3求得的那个结果里,把 P1 后面的那个点拿出来做当前点,即 P2 。接下来开始找第三个点:

4. 连接P0和栈顶的那个点,得到直线 L 。看当前点是在直线 L 的右边还是左边。如果在直线的右边就执行步骤5;如果在直线上,或者在直线的左边就执行步骤6。

5. 如果在右边,则栈顶的那个元素不是凸包上的点,把栈顶元素出栈。执行步骤4。

6. 当前点是凸包上的点,把它压入栈,执行步骤7。

7. 检查当前的点 P2 是不是步骤3那个结果的最后一个元素。是最后一个元素的话就结束。如果不是的话就把 P2 后面那个点做当前点,返回步骤4。

 public class Solution {
public int orientation(Point p, Point q, Point r) {
return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
}
public int distance(Point p, Point q) {
return (p.x - q.x) * (p.x - q.x) + (p.y - q.y) * (p.y - q.y);
}
private static Point bottomLeft(Point[] points) {
Point bottomLeft = points[0];
for (Point p: points)
if (p.y < bottomLeft.y)
bottomLeft = p;
return bottomLeft;
}
public List <Point> outerTrees(Point[] points) {
if (points.length <= 1)
return Arrays.asList(points);
Point bm = bottomLeft(points);
Arrays.sort(points, new Comparator< Point >() {
public int compare(Point p, Point q) {
double diff = orientation(bm, p, q) - orientation(bm, q, p);
if (diff == 0)
return distance(bm, p) - distance(bm, q);
else
return diff > 0 ? 1 : -1;
}
});
int i = points.length - 1;
while (i >= 0 && orientation(bm, points[points.length - 1], points[i]) == 0)
i--;
for (int l = i + 1, h = points.length - 1; l < h; l++, h--) {
Point temp = points[l];
points[l] = points[h];
points[h] = temp;
}
Stack < Point > stack = new Stack< >();
stack.push(points[0]);
stack.push(points[1]);
for (int j = 2; j < points.length; j++) {
Point top = stack.pop();
while (orientation(stack.peek(), top, points[j]) > 0)
top = stack.pop();
stack.push(top);
stack.push(points[j]);
}
return new ArrayList<>(stack);
}
}

Leetcode 587.安装栅栏的更多相关文章

  1. Java实现 LeetCode 587 安装栅栏(图算法转换成数学问题)

    587. 安装栅栏 在一个二维的花园中,有一些用 (x, y) 坐标表示的树.由于安装费用十分昂贵,你的任务是先用最短的绳子围起所有的树.只有当所有的树都被绳子包围时,花园才能围好栅栏.你需要找到正好 ...

  2. leetcode 587. Erect the Fence 凸包的计算

    leetcode.587.Erect the Fence 凸包问题.好像是我在leetcode做的第一个凸包问题吧. 第一次做,涉及到的东西还是蛮多的.有一个东西很重要,就是已知一个点和一个矢量,求这 ...

  3. [Swift]LeetCode587. 安装栅栏 | Erect the Fence

    There are some trees, where each tree is represented by (x,y) coordinate in a two-dimensional garden ...

  4. Swift LeetCode 目录 | Catalog

    请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift    说明:题目中含有$符号则为付费题目. 如 ...

  5. C#LeetCode刷题-几何

    几何篇 # 题名 刷题 通过率 难度 587 安装栅栏   21.5% 困难 892 三维形体的表面积 C#LeetCode刷题之#892-三维形体的表面积(Surface Area of 3D Sh ...

  6. leetcode难题

    4 寻找两个有序数组的中位数       35.9% 困难     10 正则表达式匹配       24.6% 困难     23 合并K个排序链表       47.4% 困难     25 K ...

  7. IDEA安装leetcode editor插件

    leetcode > https://leetcode-cn.com/ 本地idea刷题可以直接同步提交,测试等相关操作 需要安装leetcode editor插件 1.idea setting ...

  8. 工具推荐--刷LeetCode的神器

    本文首发于微信公众号:[坂本先生],文章地址为: https://mp.weixin.qq.com/s/vHv5hO8nils_g2VSKwu1Cg如有转载请标明出处 今天给大家安利一款快速刷Leet ...

  9. IDEA2020.1使用LeetCode插件运行并调试本地样例

    环境: idea2020.1 插件: LeetCode-editor 6.7 一.IDEA安装LeetCode插件 安装完成重启idea 打开插件 URL可以选择国服和世界服.LoginName和Pa ...

随机推荐

  1. php使用GD库实现图片水印和缩略图——给图片添加文字水印

    今天呢,就来学习一下在php中使用PD库来实现对图片水印的文字水印方法,不需要PS哦! 首先,准备素材 (1)准备一张图片 (2)准备一张水印(最好是透明的,即背景是白色底) (3)准备一中字体(在电 ...

  2. 【HHHOJ】NOIP2018 模拟赛(二十五) 解题报告

    点此进入比赛 得分: \(100+100+20=220\)(\(T1\)打了两个小时,以至于\(T3\)没时间打了,无奈交暴力) 排名: \(Rank\ 8\) \(Rating\):\(+19\) ...

  3. Hybrid App开发之css样式使用

    前言: 前面学习了html,今天学习一下css的基本使用,看下html与css之间是如何结合来编写前端网页的. CSS 是什么? CSS 是 Cascading Style Sheets(级联样式表) ...

  4. python剑指offer 顺时针打印指针

    题目描述 输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字,例如,如果输入如下4 X 4矩阵: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 则依次打印出数 ...

  5. React后台管理系统-商品管理列表组件

    1.商品列表页面结构 <div id="page-wrapper">              <PageTitle title="商品列表" ...

  6. 利用原生JS实现类似浏览器查找高亮功能(转载)

    利用原生JS实现类似浏览器查找高亮功能 在完成 Navify 时,增加一个类似浏览器ctrl+f查找并该高亮的功能,在此进行一点总结: 需求 在.content中有许多.box,需要在.box中找出搜 ...

  7. Oracle Hint 之 Parallel

    强制启用oralce的多线程处理功能. 并行查询允许将一个sql select 语句划分为多个较小的查询,每个部分的查询并发的运行,然后将各个部分的结果组合起来,提供最终的结果,多用于全表扫描,索引全 ...

  8. gulp的常用插件

    gulp和webpack的差别:https://www.cnblogs.com/lovesong/p/6413546.html var gulp = require('gulp'); var del ...

  9. 32-3题:LeetCode103. Binary Tree Zigzag Level Order Traversal锯齿形层次遍历/之字形打印二叉树

    题目 给定一个二叉树,返回其节点值的锯齿形层次遍历.(即先从左往右,再从右往左进行下一层遍历,以此类推,层与层之间交替进行). 例如: 给定二叉树 [3,9,20,null,null,15,7], 3 ...

  10. BZOJ2118: 墨墨的等式(最短路 数论)

    题意 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. So ...