题目描述

输入

输出

样例输入

3
2 1
3 2
5 1

样例输出

8
6
75


题解

语文题+数论+dp

花了大段讲述什么叫mu,什么叫phi,只是新定义的mu将2看作有平方因子,新定义的phi(1)=0。

要求的就是mu值为1的数的phi值之和、所有mu值为-1的phi值之和、以及所有mu值为0的phi值之和。

先只考虑前两种,此时无论质因子有多少个,能够使用的只有1个。如果p不是2,那么就有两种情况:使用和不使用。使用的话,素数个数+1,也就是mu变为相反数。

又因为phi是积性函数,所以之前的phi的和乘上p-1就是新得到的phi值和。

用一个类似于dp的思想求出这两个答案,最后由于∑phi(d)(d|m)=m,那么三种答案之和应该为m-1(因为题目中说1不算做约数),所以m-1减去前两种即可得到第三种。

处理ans1和ans2的时候应该先把phi1当作1处理,然后再减掉。

#include <cstdio>
#include <algorithm>
#define mod 10000
using namespace std;
int pow(int x , int y)
{
int ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
int main()
{
int k , m = 1 , i , p , e , ans1 = 1 , ans2 = 0 , t;
scanf("%d" , &k);
while(k -- )
{
scanf("%d%d" , &p , &e) , m = m * pow(p , e) % mod;
if(p != 2) t = ans1 , ans1 = (ans1 + ans2 * (p - 1)) % mod , ans2 = (ans2 + t * (p - 1)) % mod;
}
ans1 = (ans1 - 1 + mod) % mod;
printf("%d\n%d\n%d\n" , ans1 , ans2 , (m - ans1 - ans2 - 1 + 2 * mod) % mod);
return 0;
}

【bzoj1408】[Noi2002]Robot 数论+dp的更多相关文章

  1. 【BZOJ1408】[Noi2002]Robot DP+数学

    [BZOJ1408][Noi2002]Robot Description Input Output Sample Input 3 2 1 3 2 5 1 Sample Output 8 6 75 HI ...

  2. BZOJ 1408: [Noi2002]Robot

    1408: [Noi2002]Robot Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 510  Solved: 344[Submit][Status][ ...

  3. 洛谷$P5366\ [SNOI2017]$遗失的答案 数论+$dp$

    正解:数论$dp$ 解题报告: 传送门$QwQ$ 考虑先质因数分解.所以$G$就相当于所有系数取$min$,$L$就相当于所有系数取$max$ 这时候考虑,因为数据范围是$1e8$,$1e8$内最多有 ...

  4. [NOI2002] Robot 解题报告(数论+DP)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1408 Description 3030年,Macsy正在火星部署一批机器人. 第1秒,他 ...

  5. 【bzoj1408】 Noi2002—Robot

    http://www.lydsy.com/JudgeOnline/problem.php?id=1408 (题目链接) 题意 定义了3种数,分别求这3种数的φ的和,其中φ(1)=0. Solution ...

  6. UVALive - 6916 Punching Robot Lucas+dp

    题目链接: http://acm.hust.edu.cn/vjudge/problem/96344 Punching Robot Time Limit: 1000MS64bit IO Format: ...

  7. 数论+DP HDOJ 4345 Permutation

    题目传送门 题意:一个置换群,经过最少k次置换后还原.问给一个N个元素,在所有的置换群里,有多少个不同的k. 分析:这道题可以转化成:N = Σ ai ,求LCM ( ai )有多少个不同的值.比如N ...

  8. HDU 4576 Robot(概率dp)

    题目 /*********************复制来的大致题意********************** 有N个数字,M个操作, 区间L, R. 然后问经过M个操作后落在[L, R]的概率. * ...

  9. HDU 5656 CA Loves GCD (数论DP)

    CA Loves GCD 题目链接: http://acm.hust.edu.cn/vjudge/contest/123316#problem/B Description CA is a fine c ...

随机推荐

  1. 国外常用代理IP对比【仅供参考】

    国外常用代理IP对比[仅供参考]http://www.it588.cn/vmware/2019-03-22/547.html

  2. 制作带复选框的ListView控件

    实现效果: 知识运用   ListView控件的GridLines //设置是否在ListView控件中显示网格线 public bool GridLines{get;set} 和CheckBoxes ...

  3. 如何在python中读写和存储matlab的数据文件(*.mat)

    使用sicpy.io即可.sicpy.io提供了两个函数loadmat和savemat,非常方便. 以前也有一些开源的库(pymat和pymat2等)来做这个事, 不过自从有了numpy和scipy以 ...

  4. Incorrect key file for table './xx_db/xx_table.MYI'; try to repair it

    解决办法: 可以先运行 CHECK TABLE 表名 检查下是否存在错误. 然后运行 REPAIR TABLE 表名 进行修复.

  5. C# FileStream对象

    FileStream对象表示在磁盘或网络路径上指向文件的流.当类提供向文件读写字节的方法时,经常使用StreamReader或StreamWriter执行这些功能.这是因为FileStream类操作字 ...

  6. 零基础快速入门SpringBoot2.0教程 (二)

    一.SpringBoot2.x使用Dev-tool热部署 简介:介绍什么是热部署,使用springboot结合dev-tool工具,快速加载启动应用 官方地址:https://docs.spring. ...

  7. Java中的异常处理从概念到实例

    1.概念 采用新的异常处理机制 在以往的程序开发过程中,经常采用返回值进行处理.例如,在编写一个方法,可以返回一个状态代码,调用者根据状态代码判定出错与否.若状态代码表示一个错误,则调用这进行相应的处 ...

  8. Dtree 添加 checkbox 复选框 可以默认选中

    一:目标 要实现用一个树形结构的展示数据,每个节点(除了根节点)前有一个checkbox,同时,点击父节点,则子节点全选或者全不选,当选中了全部子节点,父节点选中:如下图所示: 同时可以在创建的时候, ...

  9. 五、Shell 基本运算符

    Shell 基本运算符 Shell 和其他编程语言一样,支持多种运算符,包括: 算数运算符 关系运算符 布尔运算符 字符串运算符 文件测试运算符 原生bash不支持简单的数学运算,但是可以通过其他命令 ...

  10. 二十六、MySQL 临时表

    MySQL 临时表 MySQL 临时表在我们需要保存一些临时数据时是非常有用的.临时表只在当前连接可见,当关闭连接时,Mysql会自动删除表并释放所有空间. 临时表在MySQL 3.23版本中添加,如 ...