题目描述

给出N个点,让你画一个最小的包含所有点的圆。

输入

先给出点的个数N,2<=N<=100000,再给出坐标Xi,Yi.(-10000.0<=xi,yi<=10000.0)

输出

输出圆的半径,及圆心的坐标

样例输入

6
8.0 9.0
4.0 7.5
1.0 2.0
5.1 8.7
9.0 2.0
4.5 1.0

样例输出

5.00
5.00 5.00


题解

随机增量法求最小圆覆盖裸题

求法:设初始圆为某空圆,先枚举第一个点,如果不在当前圆内,则令当前圆为这一个点的最小圆覆盖并枚举第二个点,如果不在则变为这两个点的最小圆覆盖并枚举第三个点,如果不在则变为这三个点的最小圆覆盖。

看上去是三重循环,但是实际上时间复杂度为期望$O(n)$的,证明参见 http://blog.csdn.net/lthyxy/article/details/6661250

需要先将点随机排序以防止被刻意卡掉。

另外求三个点的公共圆时可以直接套用坐标公式,参见代码。

#include <cmath>
#include <cstdio>
#include <algorithm>
#define N 100010
using namespace std;
const double eps = 1e-15;
double x[N] , y[N];
int id[N];
inline double squ(double x)
{
return x * x;
}
int main()
{
srand(20011011);
int n , i , j , k;
double px = 0 , py = 0 , r = 0 , x1 , x2 , x3 , y1 , y2 , y3;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%lf%lf" , &x[i] , &y[i]) , id[i] = i;
random_shuffle(id + 1 , id + n + 1);
for(i = 1 ; i <= n ; i ++ )
{
if(squ(px - x[id[i]]) + squ(py - y[id[i]]) > r + eps)
{
px = x[id[i]] , py = y[id[i]] , r = 0;
for(j = 1 ; j < i ; j ++ )
{
if(squ(px - x[id[j]]) + squ(py - y[id[j]]) > r + eps)
{
px = (x[id[i]] + x[id[j]]) / 2 , py = (y[id[i]] + y[id[j]]) / 2 , r = (squ(x[id[i]] - x[id[j]]) + squ(y[id[i]] - y[id[j]])) / 4;
for(k = 1 ; k < j ; k ++ )
{
if(squ(px - x[id[k]]) + squ(py - y[id[k]]) > r + eps)
{
x1 = x[id[i]] , x2 = x[id[j]] , x3 = x[id[k]];
y1 = y[id[i]] , y2 = y[id[j]] , y3 = y[id[k]];
px = (x1 * x1 * (y2 - y3) + x2 * x2 * (y3 - y1) + x3 * x3 * (y1 - y2) - (y1 - y2) * (y2 - y3) * (y3 - y1)) / (x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) / 2;
py = ((x1 - x2) * (x2 - x3) * (x3 - x1) - y1 * y1 * (x2 - x3) - y2 * y2 * (x3 - x1) - y3 * y3 * (x1 - x2)) / (x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) / 2;
r = squ(px - x1) + squ(py - y1);
}
}
}
}
}
}
printf("%.15lf\n%.15lf %.15lf\n" , sqrt(r) , px , py);
return 0;
}

【bzoj1336/1337/2823】[Balkan2002]Alien最小圆覆盖 随机增量法的更多相关文章

  1. 【BZOJ1336】[Balkan2002]Alien最小圆覆盖 随机增量法

    [BZOJ1336][Balkan2002]Alien最小圆覆盖 Description 给出N个点,让你画一个最小的包含所有点的圆. Input 先给出点的个数N,2<=N<=10000 ...

  2. BZOJ.2823.[AHOI2012]信号塔(最小圆覆盖 随机增量法)

    BZOJ 洛谷 一个经典的随机增量法,具体可以看这里,只记一下大体流程. 一个定理:如果一个点\(p\)不在点集\(S\)的最小覆盖圆内,那么它一定在\(S\bigcup p\)的最小覆盖圆上. 所以 ...

  3. [BZOJ2823][BZOJ1336][BZOJ1337]最小圆覆盖(随机增量法)

    算法介绍网上有很多,不解释了. 给出三点坐标求圆心方法:https://blog.csdn.net/liyuanbhu/article/details/52891868 记得先random_shuff ...

  4. hdu 3007【最小圆覆盖-随机增量法模板】

    #include<iostream> #include<cstdio> #include<cmath> #include<algorithm> usin ...

  5. BZOJ1336 Balkan2002 Alien最小圆覆盖 【随机增量法】*

    BZOJ1336 Balkan2002 Alien最小圆覆盖 Description 给出N个点,让你画一个最小的包含所有点的圆. Input 先给出点的个数N,2<=N<=100000, ...

  6. bzoj1336: [Balkan2002]Alien最小圆覆盖

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1336 1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 ...

  7. BZOJ 1337: 最小圆覆盖1336: [Balkan2002]Alien最小圆覆盖(随机增量法)

    今天才知道有一种东西叫随机增量法就来学了= = 挺神奇的= = A.令ci为包括前i个点的最小圆,若第i+1个点无法被ci覆盖,则第i+1个点一定在ci+1上 B.令ci为包括前i个点的最小圆且p在边 ...

  8. [BZOJ 1336] [Balkan2002] Alien最小圆覆盖 【随机增量法】

    题目链接:BZOJ - 1336 题目分析 最小圆覆盖有一个算法叫做随机增量法,看起来复杂度像是 O(n^3) ,但是可以证明其实平均是 O(n) 的,至于为什么我不知道= = 为什么是随机呢?因为算 ...

  9. 洛谷 P1742 最小圆覆盖 (随机增量)

    题目链接:P1742 最小圆覆盖 题意 给出 N 个点,求最小的包含所有点的圆. 思路 随机增量 最小圆覆盖一般有两种做法:随机增量和模拟退火.随机增量的精确度更高,这里介绍随机增量的做法. 先将所有 ...

随机推荐

  1. 【BZOJ1060】[ZJOI2007] 时态同步(树形DP)

    点此看题面 大致题意: 给你一棵带权树,每次使用道具可以将某条边的边权加\(1\),问你至少需要使用多少次道具,才能使每个叶子节点到根节点的距离相等. 贪心的思想 首先,我们应该先有一个贪心的思想. ...

  2. 【转载】2018 hosts 持续更新访问 gu歌【更新于:2018-05-03】

      修改HOSTS实现免费,简单访问谷歌的目的   也是比较稳定的方法.修改hosts.修改hosts的方法,原理在于直接存储谷歌网站的IP地址.这样就不用DNS来解析网址了.也就是说,当我们输入谷歌 ...

  3. 完全用 Linux 工作

    GNU/Linux 不是每個人都想用的.如果你只需要處理一般的事務,玩遊戲,那就不需要了解 Linux. UNIX 比 Windows 更適合用於科學研究工作. 大多數科學家和工程師以 UNIX 作為 ...

  4. hadoop + ssh 配置

    1.输入 2.解决上述问题 3. 4.去掉登陆密码 5.不用密码登陆

  5. AJAXA进行分页(2)

    查询功能是开发中最重要的一个功能,大量数据的显示,我们用的最多的就是分页. 在ASP.NET 中有很多数据展现的控件,比如用的最多的GridView,它同时也自带了分页的功能.但是我们知道用GridV ...

  6. java面向对象思想1

    1.面向对象是面向过程而言.两者都是一种思想.面向过程:强调的是功能行为.(强调过程.动作)面向对象:将功能封装进对象,强调了具备了功能的对象.(强调对象.事物)面向对象是基于面向过程的.将复杂的事情 ...

  7. 51nod——2476 小b和序列(预处理 思维)

    对于每一个元素,预处理出它作为最小值,两边可以作用到的最大位置.比如下标∈[0,8]的这个数组:1 8 6 2 5 4 3 8 7,1可以作用到所有区间,2可以作用到区间[1,8],第一个8可以作用到 ...

  8. BZOJ2287: 【POJ Challenge】消失之物(背包dp)

    题意 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” ...

  9. http 工作模式与模块

    目录 http 工作模式与模块 http 服务器应用 MPM工作模式 prefork worker event 进程角色 httpd功能特性 http 安装 centos6配置目录 http 2.2 ...

  10. JZOJ 5344. 摘果子

    Description Input Output Sample Input 7 9 39 6 13 2 22 6 7 4 -19 5 28 6 -17 1 2 1 3 2 4 1 5 4 6 2 7 ...