[AHOI2009]同类分布
题目大意:
问在区间[l,r]内的正整数中,有多少数能被其个位数字之和整除。
思路:
数位DP。
极端情况下,每一位都是9,所以各位数字之和不超过9*18。(为了方便这里用了9*19)
f[i][j][k][flag],表示DP到从左往右第i位时,各位数字之和为j,这个数字在模mod意义下为k。
flag表示是否为边界情况。
转移的时候枚举这一位上的数p。
设当前位是cur,则转移方程为:
f[i-1][j+p][(k*10+p)%mod][false]+=f[i][j][k][false];
f[i-1][j+p][(k*10+p)%mod][false]+=f[i][j][k][true];(p<cur)
f[i-1][j+p][(k*10+p)%mod][true]+=f[i][j][k][true];(p=cur)
观察发现f的第1维只会同时用到两层,所以可以滚动数组。
#include<cstdio>
#include<cctype>
#include<cstring>
typedef unsigned long long qword;
inline qword getint() {
register char ch;
while(!isdigit(ch=getchar()));
register qword x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const qword pow[]={1ull,10ull,100ull,1000ull,10000ull,100000ull,1000000ull,10000000ull,100000000ull,1000000000ull,10000000000ull,100000000000ull,1000000000000ull,10000000000000ull,100000000000000ull,1000000000000000ull,10000000000000000ull,100000000000000000ull,1000000000000000000ull,10000000000000000000ull};
const int SUM=*;
qword f[][SUM+][SUM][];
inline qword calc(const qword &n) {
const int len=__builtin_log10(n)+;
qword ret=;
for(register int mod=;mod<=*len;mod++) {
memset(f[len&],,sizeof f[len&]);
f[len&][][][true]=;
for(register int i=len;i;i--) {
memset(f[!(i&)],,sizeof f[!(i&)]);
const int cur=n%pow[i]/pow[i-];
for(register int j=;j<=mod;j++) {
for(register int k=;k<mod;k++) {
for(register int p=;p<;p++) {
if(j+p>mod) break;
f[!(i&)][j+p][((((k<<)+k)<<)+p)%mod][false]+=f[i&][j][k][false];
if(p<cur) f[!(i&)][j+p][((((k<<)+k)<<)+p)%mod][false]+=f[i&][j][k][true];
if(p==cur) f[!(i&)][j+p][((((k<<)+k)<<)+p)%mod][true]+=f[i&][j][k][true];
}
}
}
}
ret+=f[][mod][][false]+f[][mod][][true];
}
return ret;
}
int main() {
const qword l=getint(),r=getint();
printf("%llu\n",calc(r)-calc(l-));
return ;
}
[AHOI2009]同类分布的更多相关文章
- 【BZOJ1799】[AHOI2009]同类分布(动态规划)
[BZOJ1799][AHOI2009]同类分布(动态规划) 题面 BZOJ 洛谷 题解 很容易想到数位\(dp\),然而数字和整除原数似乎不好记录.没关系,直接枚举数字和就好了,这样子就可以把整除原 ...
- 洛谷 P4127 [AHOI2009]同类分布 解题报告
P4127 [AHOI2009]同类分布 题目描述 给出两个数\(a,b\),求出\([a,b]\)中各位数字之和能整除原数的数的个数. 说明 对于所有的数据,\(1 ≤ a ≤ b ≤ 10^{18 ...
- P4127 [AHOI2009]同类分布
P4127 [AHOI2009]同类分布 题解 好的,敲上数位DP DFS板子 记录一下填的各位数字之和 sum ,然后记录一下原数 yuan 最后判断一下 yuan%sum==0 不就好啦??? ...
- [BZOJ1799][AHOI2009]同类分布(数位DP)
1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec Memory Limit: 64 MBSubmit: 1635 Solved: 728[Submit][S ...
- 【[AHOI2009]同类分布】
这是一篇有些赖皮的题解 (如果不赖皮的话,bzoj上也是能卡过去的) 首先由于我这个非常\(sb\)的方法复杂度高达\(O(171^4)\),所以面对极限的\(1e18\)的数据实在是卡死了 但是这个 ...
- 【题解】AHOI2009同类分布
好开心呀~果然只有不看题解做出来的题目才会真正的有一种骄傲与满足吧ヾ(๑╹◡╹)ノ" 实际上这题只要顺藤摸瓜就可以了.首先按照数位dp的套路,有两维想必是省不掉:1.当前dp到到的位数:2. ...
- [luogu4127 AHOI2009] 同类分布 (数位dp)
传送门 Solution 裸数位dp,空间存不下只能枚举数字具体是什么 注意memset最好为-1,不要是0,有很多状态答案为0 Code //By Menteur_Hxy #include < ...
- 洛谷 P4127 [AHOI2009]同类分布
题意简述 求l~r之间各位数字之和能整除原数的数的个数. 题解思路 数位DP 代码 #include <cstdio> #include <cstring> typedef l ...
- 【数位DP】【P4127】[AHOI2009]同类分布
Description 给出两个数 \(a,~b\) 求出 \([a~,b]\) 中各位数字之和能整除原数的数的个数. Limitations \(1 \leq a,~b \leq 10^{18}\) ...
随机推荐
- UVA - 10494 If We Were a Child Again
用java写的大数基本操作,java要求的格式比较严谨. import java.util.*; import java.math.*; public class Main { public stat ...
- 33、re的match和search区别?
1.match()函数只检测RE是不是在string的开始位置匹配,search()会扫描整个string查找匹配:2.也就是说match()只有在0位置匹配成功的话才有返回,如果不是开始位置匹配成功 ...
- 24、简述Python的深浅拷贝以及应用场景
深浅拷贝的原理 深浅拷贝用法来自copy模块. 导入模块:import copy 浅拷贝:copy.copy 深拷贝:copy.deepcopy 字面理解:浅拷贝指仅仅拷贝数据集合的第一层数据,深拷贝 ...
- 技巧之如何快速使用websocket来监控标准输出
为啥是Websocket 服务端可以主动推送消息到浏览器端.比如服务端实时在打印日志,这是一个标准输出,可以实时将日志推送到浏览器. 为啥用websocketd (https://github.com ...
- java中的matches -> 完全匹配
matches是完全匹配.跟matcher不一样, matcher像perl正则, 能匹配到符合的都会返回true, 而这个matches要完全一模一样才行. import java.util.reg ...
- python自动开发之(算法)第二十七天
1.什么是算法? 算法(Algorithm):一个计算过程,解决问题的方法 2.复习:递归 递归的两个特点:(1) 调用自身 (2)结束条件 def func1(x): print(x) func1( ...
- 64_s3
sugar-toolkit-gtk3-devel-0.110.0-2.fc26.i686.rpm 13-Feb-2017 10:56 22626 sugar-toolkit-gtk3-devel-0. ...
- HDU 1024 Max Sum Plus Plus(dp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1024 题目大意:有多组输入,每组一行整数,开头两个数字m,n,接着有n个数字.要求在这n个数字上,m块 ...
- iptables配置文件
https://www.cnblogs.com/itxiongwei/p/5871075.html
- Ntp时间服务器与定时任务Crontab
一 NTP时间服务器 1 局域网内的NTP同步配置 注意 所有配置操作必须是root用户 ,局域网内node21作为NTP Server,node22,node23作为NTP Client与服务器进行 ...