「POI2011 R1」Conspiracy

解题思路 :

问题转化为,将点集分成两部分,其中一部分恰好组成一个团,其中另一部分恰好组成一个独立集。

观察发现,如果求出了一个解,那么答案最多可以在这个解的基础上将一个点从团移到独立集,一个点从独立集移到团。

证明,如果有两个点从团移到独立集,那么这两个点之间的边就矛盾了,如果有两个点从独立集移到团,那么这两个点之间没有边也矛盾了。

所以只要我们求出了任意一组解,我们就可以通过枚举哪个点从团内移出去和哪个点从独立集里移进来来求出解的数量。

再进一步观察,发现这个模型可以用2-sat来建图,把每个点 \(x\) 拆成 \(x\) 和 \(x'\) 。表示 \(x\) 在团里和 \(x\) 在独立集里,如果 \(x,y\) 之间有边,那么如果 \(x\) 选了独立集 \(y\) 就必须要选团,所以连一条 \(x'\rightarrow y\) 。同理,如果 \(x, y\) 之间没有边,那么如果 \(x\) 选了团 \(y\) 就必须要选独立集,所以连一条 \(x\rightarrow y'\) 。最后 2-sat求出一组解即可,总复杂度 \(O(n^2)\)。

code

/*program by mangoyang*/
#pragma GCC optimize("Ofast","inline")
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int f = 0, ch = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
} const int N = 5005; bitset<N>mp[N];
short t[2][N], tot[2], deg[N], n; int ans; namespace twosat{
queue<short> q;
bitset<N<<1>mp[N<<1];
vector<short> d[N*2], c[N*2], g[N*2];
short st[N*2], dfn[N*2], ins[N*2], deg[N*2];
short in[N*2], low[N*2], col[N*2], top, id, Index;
inline void spop(int u, int id){
ins[u] = 0, col[u] = id, c[id].push_back(u);
for(int i = 0; i < g[u].size(); i++)
d[id].push_back(g[u][i]);
}
inline void tarjan(int u){
dfn[u] = low[u] = ++Index, st[++top] = u, ins[u] = 1;
for(int i = 0; i < g[u].size(); i++){
int v = g[u][i];
if(!dfn[v]) tarjan(v), low[u] = min(low[v], low[u]);
else if(ins[v]) low[u] = min(dfn[v], low[u]);
}
if(dfn[u] == low[u]){
++id;
while(st[top] != u) spop(st[top--], id);
spop(st[top--], id);
}
}
inline void solve(){
for(int i = 1; i <= 2 * n; i++) if(!dfn[i]) tarjan(i);
for(int i = 1; i <= n; i++)
if(col[i] == col[i+n]){ puts("0"), exit(0); }
for(int i = 1; i <= id; i++)
for(int j = 0; j < d[i].size(); j++)
if(col[d[i][j]] != i && !mp[col[d[i][j]]][i])
mp[col[d[i][j]]][i] = 1, deg[i]++;
for(int i = 1; i <= id; i++) if(!deg[i]) q.push(i);
for(; !q.empty(); q.pop()){
int u = q.front();
for(int i = 0; i < c[u].size(); i++){
int v = c[u][i];
int pos = v <= n ? 0 : 1, v1 = v <= n ? v + n : v - n;
if(!in[v1])
t[pos][++tot[pos]] = v <= n ? v : v - n, in[v] = 1;
}
for(int i = 1; i <= id; i++)
if(mp[u][i] && !--deg[i]) q.push(i);
}
}
} int main(){
read(n);
for(int i = 1, num, x; i <= n; i++){
read(num);
for(int j = 1; j <= num; j++) read(x), mp[i][x] = 1;
}
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++) if(i != j){
if(mp[i][j]) twosat::g[i+n].push_back(j), deg[i]++;
else twosat::g[i].push_back(j+n);
}
twosat::solve();
if(tot[0] && tot[1]) ans++;
if(tot[0] > 1)
for(int i = 1; i <= tot[0]; i++)
if(deg[t[0][i]] == tot[0] - 1) ans++;
for(int i = 1; i <= tot[1]; i++){
int flag = 1, cnt = 1, u = 0;
for(int j = 1; j <= tot[0]; j++)
if(!mp[t[1][i]][t[0][j]]){
if(++cnt > 1){ flag = 0; break; }
u = t[0][j];
}
if(flag && !u && tot[1] > 1) ans++;
if(flag && u && deg[u] == tot[0]) ans++;
}
cout << ans;
return 0;
}

「POI2011 R1」Conspiracy的更多相关文章

  1. LuoguP7127 「RdOI R1」一次函数(function) 题解

    Content 设 \(S_k\) 为直线 \(f(x)=kx+k-1\),直线 \(f(x)=(k+1)x+k\) 与 \(x\) 轴围成的三角形的面积.现在给出 \(t\) 组询问,每组询问给定一 ...

  2. 「POI2011」Meteors

    「POI2011」Meteors 传送门 整体二分,树状数组实现区间修改单点查询,然后注意修改是在环上的. 参考代码: #include <cstdio> #include <vec ...

  3. 「AHOI / HNOI2017」影魔

    「AHOI / HNOI2017」影魔 题目描述 解决这类比较复杂的区间贡献问题关键在于找到计算的对象. 比如这道题,我们计算的对象就是区间中间的最大值. 对于点\(i\),我们找到左边第一个比他大的 ...

  4. [LOJ 2022]「AHOI / HNOI2017」队长快跑

    [LOJ 2022]「AHOI / HNOI2017」队长快跑 链接 链接 题解 不难看出,除了影响到起点和终点的射线以外,射线的角度没有意义,因为如果一定要从该射线的射出一侧过去,必然会撞到射线 因 ...

  5. 「国家集训队」小Z的袜子

    「国家集训队」小Z的袜子 传送门 莫队板子题. 注意计算答案的时候,由于分子分母都要除以2,所以可以直接约掉,这样在开桶算的时候也方便一些. 参考代码: #include <algorithm& ...

  6. P7708「Wdsr-2.7」八云蓝自动机 Ⅰ

    *X. P7708「Wdsr-2.7」八云蓝自动机 Ⅰ. 摘自 分治与根号数据结构学习笔记 第三部分 莫队 例题 X.. 一道莫队好题.私以为本题最有价值的地方在于对单点修改的转化以及对交换两个数的处 ...

  7. Note -「动态 DP」学习笔记

    目录 「CF 750E」New Year and Old Subsequence 「洛谷 P4719」「模板」"动态 DP" & 动态树分治 「洛谷 P6021」洪水 「S ...

  8. 前端构建工具之gulp(一)「图片压缩」

    前端构建工具之gulp(一)「图片压缩」 已经很久没有写过博客了,现下终于事情少了,开始写博吧 今天网站要做一些优化:图片压缩,资源合并等 以前一直使用百度的FIS工具,但是FIS还没有提供图片压缩的 ...

  9. fir.im Weekly - 如何打造 Github 「爆款」开源项目

    最近 Android 转用 Swift 的传闻甚嚣尘上,Swift 的 Github 主页上已经有了一次 merge>>「Port to Android」,让我们对 Swift 的想象又多 ...

随机推荐

  1. CodeForces - 877C

    Slava plays his favorite game "Peace Lightning". Now he is flying a bomber on a very speci ...

  2. python3-可变和不可变数据类型

    可变:[ ]    { } 不可变:int    str   ( )     应用实例: 把列表l,追加到列表s中,现在网列表l中追加一个5,打印列表s可以看到,列表s中的列表l中也有5. d={&q ...

  3. Qualcom QMI系列-基本知识介绍(转)

    1 引言1.1 编写目的       介绍Qualcom QMI 基本知识,API使用,设计原理,基于QMI的RemoteEfs(NV)分析1.2 阅读建议       高通平台入门1.3 参考资料 ...

  4. Ubuntu 10.04 分辨率调整

    最近学长们看了我的本本都在问我,显卡驱动是不是出现什么问题了···分辨率这么差.当时我的分辨率是1024X768,于是我就想修改我的屏幕分辨率改成1280X800.本来很简单的事情,我做起来却非常的曲 ...

  5. C# String.Format用法和格式说明

    1.格式化货币(跟系统的环境有关,中文系统默认格式化人民币,英文系统格式化美元) string.Format("{0:C}",0.2) 结果为:¥0.20 (英文操作系统结果:$0 ...

  6. PHP解决并发问题的几种实现

    对于商品抢购等并发场景下,可能会出现超卖的现象,这时就需要解决并发所带来的这些问题了 在PHP语言中并没有原生的提供并发的解决方案,因此就需要借助其他方式来实现并发控制. 方案一:使用文件锁排它锁 f ...

  7. jersey中的 404 Not Found 错误。

    把资源定义到com.diandaxia.rest包里 就可以了: 当然也可以使用注册的方式,注册到jersey框架里.当一个类 必须再com.diandaxia.rest 包之外的话,又不想 扩大 自 ...

  8. Effective STL 阅读笔记: Item 3: Make copying cheap and correct for objects in containers

    容器 (Containers) 用来存储对象 (Objects), 但是被存储的对象却并非原原本本是你给他的那一个, 而是你指定对象的一个拷贝.而后续对该容器内存储对象的操作,大多也是基于拷贝的. 拷 ...

  9. scala学习6--collection

     list的下标访问 var t = List(1,2,3,5,5) println(t(2)) map函数 println(t.map(a=> {print("***"+a ...

  10. Elasticsearch分片&副本分配

    集群索引中可能由多个分片构成,并且每个分片可以拥有多个副本,将一个单独的索引分为多个分片,可以处理不能在单一服务器上运行的 大型索引. 由于每个分片有多个副本,通过副本分配到多个服务器,可以提高查询的 ...