Hadoop中Partition深度解析
本文地址:http://www.cnblogs.com/archimedes/p/hadoop-partitioner.html,转载请注明源地址。
旧版 API 的 Partitioner 解析
Partitioner 的作用是对 Mapper 产生的中间结果进行分片,以便将同一分组的数据交给同一个 Reducer 处理,它直接影响 Reduce 阶段的负载均衡。旧版 API 中 Partitioner 的类图如图所示。它继承了JobConfigurable,可通过 configure 方法初始化。它本身只包含一个待实现的方法 getPartition。 该方法包含三个参数, 均由框架自动传入,前面两个参数是key/value,第三个参数 numPartitions 表示每个 Mapper 的分片数,也就是 Reducer 的个数。
MapReduce 提供了两个Partitioner 实 现:HashPartitioner和TotalOrderPartitioner。其中 HashPartitioner 是默认实现,它实现了一种基于哈希值的分片方法,代码如下:
public int getPartition(K2 key, V2 value, int numReduceTasks) {
return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
}
TotalOrderPartitioner 提供了一种基于区间的分片方法,通常用在数据全排序中。在MapReduce 环境中,容易想到的全排序方案是归并排序,即在 Map 阶段,每个 Map Task进行局部排序;在 Reduce 阶段,启动一个 Reduce Task 进行全局排序。由于作业只能有一个 Reduce Task,因而 Reduce 阶段会成为作业的瓶颈。为了提高全局排序的性能和扩展性,MapReduce 提供了 TotalOrderPartitioner。它能够按照大小将数据分成若干个区间(分片),并保证后一个区间的所有数据均大于前一个区间数据,这使得全排序的步骤如下:
步骤1:数据采样。在 Client 端通过采样获取分片的分割点。Hadoop 自带了几个采样算法,如 IntercalSampler、 RandomSampler、 SplitSampler 等(具体见org.apache.hadoop.mapred.lib 包中的 InputSampler 类)。 下面举例说明。
采样数据为: b, abc, abd, bcd, abcd, efg, hii, afd, rrr, mnk
经排序后得到: abc, abcd, abd, afd, b, bcd, efg, hii, mnk, rrr
如果 Reduce Task 个数为 4,则采样数据的四等分点为 abd、 bcd、 mnk,将这 3 个字符串作为分割点。
步骤2:Map 阶段。本阶段涉及两个组件,分别是 Mapper 和 Partitioner。其中,Mapper 可采用 IdentityMapper,直接将输入数据输出,但 Partitioner 必须选用TotalOrderPartitioner,它将步骤 1 中获取的分割点保存到 trie 树中以便快速定位任意一个记录所在的区间,这样,每个 Map Task 产生 R(Reduce Task 个数)个区间,且区间之间有序。TotalOrderPartitioner 通过 trie 树查找每条记录所对应的 Reduce Task 编号。 如图所示, 我们将分割点 保存在深度为 2 的 trie 树中, 假设输入数据中 有两个字符串“ abg”和“ mnz”, 则字符串“ abg” 对应 partition1, 即第 2 个 Reduce Task, 字符串“ mnz” 对应partition3, 即第 4 个 Reduce Task。
步骤 3:Reduce 阶段。每个 Reducer 对分配到的区间数据进行局部排序,最终得到全排序数据。从以上步骤可以看出,基于 TotalOrderPartitioner 全排序的效率跟 key 分布规律和采样算法有直接关系;key 值分布越均匀且采样越具有代表性,则 Reduce Task 负载越均衡,全排序效率越高。TotalOrderPartitioner 有两个典型的应用实例: TeraSort 和 HBase 批量数据导入。 其中,TeraSort 是 Hadoop 自 带的一个应用程序实例。 它曾在 TB 级数据排序基准评估中 赢得第一名,而 TotalOrderPartitioner正是从该实例中提炼出来的。HBase 是一个构建在 Hadoop之上的 NoSQL 数据仓库。它以 Region为单位划分数据,Region 内部数据有序(按 key 排序),Region 之间也有序。很明显,一个 MapReduce 全排序作业的 R 个输出文件正好可对应 HBase 的 R 个 Region。
新版 API 的 Partitioner 解析
新版 API 中的Partitioner类图如图所示。它不再实现JobConfigurable 接口。当用户需要让 Partitioner通过某个JobConf 对象初始化时,可自行实现Configurable 接口,如:
public class TotalOrderPartitioner<K, V> extends Partitioner<K,V> implements Configurable
Partition所处的位置
Partition主要作用就是将map的结果发送到相应的reduce。这就对partition有两个要求:
1)均衡负载,尽量的将工作均匀的分配给不同的reduce。
2)效率,分配速度一定要快。
Mapreduce提供的Partitioner
patition类结构
1. Partitioner<k,v>是partitioner的基类,如果需要定制partitioner也需要继承该类。源代码如下:
package org.apache.hadoop.mapred;
/**
* Partitions the key space.
*
* <p><code>Partitioner</code> controls the partitioning of the keys of the
* intermediate map-outputs. The key (or a subset of the key) is used to derive
* the partition, typically by a hash function. The total number of partitions
* is the same as the number of reduce tasks for the job. Hence this controls
* which of the <code>m</code> reduce tasks the intermediate key (and hence the
* record) is sent for reduction.</p>
*
* @see Reducer
* @deprecated Use {@link org.apache.hadoop.mapreduce.Partitioner} instead.
*/
@Deprecated
public interface Partitioner<K2, V2> extends JobConfigurable { /**
* Get the paritition number for a given key (hence record) given the total
* number of partitions i.e. number of reduce-tasks for the job.
*
* <p>Typically a hash function on a all or a subset of the key.</p>
*
* @param key the key to be paritioned.
* @param value the entry value.
* @param numPartitions the total number of partitions.
* @return the partition number for the <code>key</code>.
*/
int getPartition(K2 key, V2 value, int numPartitions);
}
2. HashPartitioner<k,v>是mapreduce的默认partitioner。源代码如下:
package org.apache.hadoop.mapreduce.lib.partition;
import org.apache.hadoop.mapreduce.Partitioner;
/** Partition keys by their {@link Object#hashCode()}. */
public class HashPartitioner<K, V> extends Partitioner<K, V> {
/** Use {@link Object#hashCode()} to partition. */
public int getPartition(K key, V value,
int numReduceTasks) {
return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
}
}
3. BinaryPatitioner继承于Partitioner<BinaryComparable ,V>,是Partitioner<k,v>的偏特化子类。该类提供leftOffset和rightOffset,在计算which reducer时仅对键值K的[rightOffset,leftOffset]这个区间取hash。
reducer=(hash & Integer.MAX_VALUE) % numReduceTasks
4. KeyFieldBasedPartitioner<k2, v2="">也是基于hash的个partitioner。和BinaryPatitioner不同,它提供了多个区间用于计算hash。当区间数为0时KeyFieldBasedPartitioner退化成HashPartitioner。 源代码如下:
package org.apache.hadoop.mapred.lib; import java.io.UnsupportedEncodingException;
import java.util.List; import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.Partitioner;
import org.apache.hadoop.mapred.lib.KeyFieldHelper.KeyDescription; /**
* Defines a way to partition keys based on certain key fields (also see
* {@link KeyFieldBasedComparator}.
* The key specification supported is of the form -k pos1[,pos2], where,
* pos is of the form f[.c][opts], where f is the number
* of the key field to use, and c is the number of the first character from
* the beginning of the field. Fields and character posns are numbered
* starting with 1; a character position of zero in pos2 indicates the
* field's last character. If '.c' is omitted from pos1, it defaults to 1
* (the beginning of the field); if omitted from pos2, it defaults to 0
* (the end of the field).
*
*/
public class KeyFieldBasedPartitioner<K2, V2> implements Partitioner<K2, V2> {
private static final Log LOG = LogFactory.getLog(KeyFieldBasedPartitioner.class.getName());
private int numOfPartitionFields; private KeyFieldHelper keyFieldHelper = new KeyFieldHelper(); public void configure(JobConf job) {
String keyFieldSeparator = job.get("map.output.key.field.separator", "\t");
keyFieldHelper.setKeyFieldSeparator(keyFieldSeparator);
if (job.get("num.key.fields.for.partition") != null) {
LOG.warn("Using deprecated num.key.fields.for.partition. " +
"Use mapred.text.key.partitioner.options instead");
this.numOfPartitionFields = job.getInt("num.key.fields.for.partition",0);
keyFieldHelper.setKeyFieldSpec(1,numOfPartitionFields);
} else {
String option = job.getKeyFieldPartitionerOption();
keyFieldHelper.parseOption(option);
}
} public int getPartition(K2 key, V2 value,
int numReduceTasks) {
byte[] keyBytes; List <KeyDescription> allKeySpecs = keyFieldHelper.keySpecs();
if (allKeySpecs.size() == 0) {
return getPartition(key.toString().hashCode(), numReduceTasks);
} try {
keyBytes = key.toString().getBytes("UTF-8");
} catch (UnsupportedEncodingException e) {
throw new RuntimeException("The current system does not " +
"support UTF-8 encoding!", e);
}
// return 0 if the key is empty
if (keyBytes.length == 0) {
return 0;
} int []lengthIndicesFirst = keyFieldHelper.getWordLengths(keyBytes, 0,
keyBytes.length);
int currentHash = 0;
for (KeyDescription keySpec : allKeySpecs) {
int startChar = keyFieldHelper.getStartOffset(keyBytes, 0, keyBytes.length,
lengthIndicesFirst, keySpec);
// no key found! continue
if (startChar < 0) {
continue;
}
int endChar = keyFieldHelper.getEndOffset(keyBytes, 0, keyBytes.length,
lengthIndicesFirst, keySpec);
currentHash = hashCode(keyBytes, startChar, endChar,
currentHash);
}
return getPartition(currentHash, numReduceTasks);
} protected int hashCode(byte[] b, int start, int end, int currentHash) {
for (int i = start; i <= end; i++) {
currentHash = 31*currentHash + b[i];
}
return currentHash;
} protected int getPartition(int hash, int numReduceTasks) {
return (hash & Integer.MAX_VALUE) % numReduceTasks;
}
}
5. TotalOrderPartitioner这个类可以实现输出的全排序。不同于以上3个partitioner,这个类并不是基于hash的。下面详细的介绍TotalOrderPartitioner
TotalOrderPartitioner 类
每一个reducer的输出在默认的情况下都是有顺序的,但是reducer之间在输入是无序的情况下也是无序的。如果要实现输出是全排序的那就会用到TotalOrderPartitioner。
要使用TotalOrderPartitioner,得给TotalOrderPartitioner提供一个partition file。这个文件要求Key(这些key就是所谓的划分)的数量和当前reducer的数量-1相同并且是从小到大排列。对于为什么要用到这样一个文件,以及这个文件的具体细节待会还会提到。
TotalOrderPartitioner对不同Key的数据类型提供了两种方案:
1) 对于非BinaryComparable 类型的Key,TotalOrderPartitioner采用二分发查找当前的K所在的index。
例如:reducer的数量为5,partition file 提供的4个划分为【2,4,6,8】。如果当前的一个key/value 是<4,”good”>,利用二分法查找到index=1,index+1=2那么这个key/value 将会发送到第二个reducer。如果一个key/value为<4.5, “good”>。那么二分法查找将返回-3,同样对-3加1然后取反就是这个key/value将要去的reducer。
对于一些数值型的数据来说,利用二分法查找复杂度是O(log(reducer count)),速度比较快。
2) 对于BinaryComparable类型的Key(也可以直接理解为字符串)。字符串按照字典顺序也是可以进行排序的。
这样的话也可以给定一些划分,让不同的字符串key分配到不同的reducer里。这里的处理和数值类型的比较相近。
例如:reducer的数量为5,partition file 提供了4个划分为【“abc”, “bce”, “eaa”, ”fhc”】那么“ab”这个字符串将会被分配到第一个reducer里,因为它小于第一个划分“abc”。
但是不同于数值型的数据,字符串的查找和比较不能按照数值型数据的比较方法。mapreducer采用的Tire tree(关于Tire tree可以参考《字典树(Trie Tree)》)的字符串查找方法。查找的时间复杂度o(m),m为树的深度,空间复杂度o(255^m-1)。是一个典型的空间换时间的案例。
Tire tree的构建
假设树的最大深度为3,划分为【aaad ,aaaf, aaaeh,abbx】
Mapreduce里的Tire tree主要有两种节点组成:
1) Innertirenode
Innertirenode在mapreduce中是包含了255个字符的一个比较长的串。上图中的例子只包含了26个英文字母。
2) 叶子节点{unslipttirenode, singesplittirenode, leaftirenode}
Unslipttirenode 是不包含划分的叶子节点。
Singlesplittirenode 是只包含了一个划分点的叶子节点。
Leafnode是包含了多个划分点的叶子节点。(这种情况比较少见,达到树的最大深度才出现这种情况。在实际操作过程中比较少见)
Tire tree的搜索过程
接上面的例子:
1)假如当前 key value pair <aad, 10="">这时会找到图中的leafnode,在leafnode内部使用二分法继续查找找到返回 aad在划分数组中的索引。找不到会返回一个和它最接近的划分的索引。
2)假如找到singlenode,如果和singlenode的划分相同或小返回他的索引,比singlenode的划分大则返回索引+1。
3)假如找到nosplitnode则返回前面的索引。如<zaa, 20="">将会返回abbx的在划分数组中的索引。
TotalOrderPartitioner的疑问
上面介绍了partitioner有两个要求,一个是速度,另外一个是均衡负载。使用tire tree提高了搜素的速度,但是我们怎么才能找到这样的partition file 呢?让所有的划分刚好就能实现均衡负载。
InputSampler
输入采样类,可以对输入目录下的数据进行采样。提供了3种采样方法。
采样类结构图
采样方式对比表:
类名称 |
采样方式 |
构造方法 |
效率 |
特点 |
SplitSampler<K,V> |
对前n个记录进行采样 |
采样总数,划分数 |
最高 |
|
RandomSampler<K,V> |
遍历所有数据,随机采样 |
采样频率,采样总数,划分数 |
最低 |
|
IntervalSampler<K,V> |
固定间隔采样 |
采样频率,划分数 |
中 |
对有序的数据十分适用 |
writePartitionFile这个方法很关键,这个方法就是根据采样类提供的样本,首先进行排序,然后选定(随机的方法)和reducer数目-1的样本写入到partition file。这样经过采样的数据生成的划分,在每个划分区间里的key/value就近似相同了,这样就能完成均衡负载的作用。
SplitSampler类的源代码如下:
/**
* Samples the first n records from s splits.
* Inexpensive way to sample random data.
*/
public static class SplitSampler<K,V> implements Sampler<K,V> {
private final int numSamples;
private final int maxSplitsSampled;
/**
* Create a SplitSampler sampling <em>all</em> splits.
* Takes the first numSamples / numSplits records from each split.
* @param numSamples Total number of samples to obtain from all selected
* splits.
*/
public SplitSampler(int numSamples) {
this(numSamples, Integer.MAX_VALUE);
}
/**
* Create a new SplitSampler.
* @param numSamples Total number of samples to obtain from all selected
* splits.
* @param maxSplitsSampled The maximum number of splits to examine.
*/
public SplitSampler(int numSamples, int maxSplitsSampled) {
this.numSamples = numSamples;
this.maxSplitsSampled = maxSplitsSampled;
}
/**
* From each split sampled, take the first numSamples / numSplits records.
*/
@SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type
public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException {
InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks());
ArrayList<K> samples = new ArrayList<K>(numSamples);
int splitsToSample = Math.min(maxSplitsSampled, splits.length);
int splitStep = splits.length / splitsToSample;
int samplesPerSplit = numSamples / splitsToSample;
long records = 0;
for (int i = 0; i < splitsToSample; ++i) {
RecordReader<K,V> reader = inf.getRecordReader(splits[i * splitStep],
job, Reporter.NULL);
K key = reader.createKey();
V value = reader.createValue();
while (reader.next(key, value)) {
samples.add(key);
key = reader.createKey();
++records;
if ((i+1) * samplesPerSplit <= records) {
break;
}
}
reader.close();
}
return (K[])samples.toArray();
}
}
RandomSampler类的源代码如下:
/**
* Sample from random points in the input.
* General-purpose sampler. Takes numSamples / maxSplitsSampled inputs from
* each split.
*/
public static class RandomSampler<K,V> implements Sampler<K,V> {
private double freq;
private final int numSamples;
private final int maxSplitsSampled; /**
* Create a new RandomSampler sampling <em>all</em> splits.
* This will read every split at the client, which is very expensive.
* @param freq Probability with which a key will be chosen.
* @param numSamples Total number of samples to obtain from all selected
* splits.
*/
public RandomSampler(double freq, int numSamples) {
this(freq, numSamples, Integer.MAX_VALUE);
} /**
* Create a new RandomSampler.
* @param freq Probability with which a key will be chosen.
* @param numSamples Total number of samples to obtain from all selected
* splits.
* @param maxSplitsSampled The maximum number of splits to examine.
*/
public RandomSampler(double freq, int numSamples, int maxSplitsSampled) {
this.freq = freq;
this.numSamples = numSamples;
this.maxSplitsSampled = maxSplitsSampled;
} /**
* Randomize the split order, then take the specified number of keys from
* each split sampled, where each key is selected with the specified
* probability and possibly replaced by a subsequently selected key when
* the quota of keys from that split is satisfied.
*/
@SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type
public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException {
InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks());
ArrayList<K> samples = new ArrayList<K>(numSamples);
int splitsToSample = Math.min(maxSplitsSampled, splits.length); Random r = new Random();
long seed = r.nextLong();
r.setSeed(seed);
LOG.debug("seed: " + seed);
// shuffle splits
for (int i = 0; i < splits.length; ++i) {
InputSplit tmp = splits[i];
int j = r.nextInt(splits.length);
splits[i] = splits[j];
splits[j] = tmp;
}
// our target rate is in terms of the maximum number of sample splits,
// but we accept the possibility of sampling additional splits to hit
// the target sample keyset
for (int i = 0; i < splitsToSample ||
(i < splits.length && samples.size() < numSamples); ++i) {
RecordReader<K,V> reader = inf.getRecordReader(splits[i], job,
Reporter.NULL);
K key = reader.createKey();
V value = reader.createValue();
while (reader.next(key, value)) {
if (r.nextDouble() <= freq) {
if (samples.size() < numSamples) {
samples.add(key);
} else {
// When exceeding the maximum number of samples, replace a
// random element with this one, then adjust the frequency
// to reflect the possibility of existing elements being
// pushed out
int ind = r.nextInt(numSamples);
if (ind != numSamples) {
samples.set(ind, key);
}
freq *= (numSamples - 1) / (double) numSamples;
}
key = reader.createKey();
}
}
reader.close();
}
return (K[])samples.toArray();
}
}
IntervalSampler类的源代码为:
/**
* Sample from s splits at regular intervals.
* Useful for sorted data.
*/
public static class IntervalSampler<K,V> implements Sampler<K,V> {
private final double freq;
private final int maxSplitsSampled; /**
* Create a new IntervalSampler sampling <em>all</em> splits.
* @param freq The frequency with which records will be emitted.
*/
public IntervalSampler(double freq) {
this(freq, Integer.MAX_VALUE);
} /**
* Create a new IntervalSampler.
* @param freq The frequency with which records will be emitted.
* @param maxSplitsSampled The maximum number of splits to examine.
* @see #getSample
*/
public IntervalSampler(double freq, int maxSplitsSampled) {
this.freq = freq;
this.maxSplitsSampled = maxSplitsSampled;
} /**
* For each split sampled, emit when the ratio of the number of records
* retained to the total record count is less than the specified
* frequency.
*/
@SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type
public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException {
InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks());
ArrayList<K> samples = new ArrayList<K>();
int splitsToSample = Math.min(maxSplitsSampled, splits.length);
int splitStep = splits.length / splitsToSample;
long records = 0;
long kept = 0;
for (int i = 0; i < splitsToSample; ++i) {
RecordReader<K,V> reader = inf.getRecordReader(splits[i * splitStep],
job, Reporter.NULL);
K key = reader.createKey();
V value = reader.createValue();
while (reader.next(key, value)) {
++records;
if ((double) kept / records < freq) {
++kept;
samples.add(key);
key = reader.createKey();
}
}
reader.close();
}
return (K[])samples.toArray();
}
}
InputSampler类完整源代码如下:
package org.apache.hadoop.mapred.lib; import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Random; import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.RawComparator;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.InputFormat;
import org.apache.hadoop.mapred.InputSplit;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.RecordReader;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; /**
* Utility for collecting samples and writing a partition file for
* {@link org.apache.hadoop.mapred.lib.TotalOrderPartitioner}.
*/
public class InputSampler<K,V> implements Tool { private static final Log LOG = LogFactory.getLog(InputSampler.class); static int printUsage() {
System.out.println("sampler -r <reduces>\n" +
" [-inFormat <input format class>]\n" +
" [-keyClass <map input & output key class>]\n" +
" [-splitRandom <double pcnt> <numSamples> <maxsplits> | " +
"// Sample from random splits at random (general)\n" +
" -splitSample <numSamples> <maxsplits> | " +
" // Sample from first records in splits (random data)\n"+
" -splitInterval <double pcnt> <maxsplits>]" +
" // Sample from splits at intervals (sorted data)");
System.out.println("Default sampler: -splitRandom 0.1 10000 10");
ToolRunner.printGenericCommandUsage(System.out);
return -1;
} private JobConf conf; public InputSampler(JobConf conf) {
this.conf = conf;
} public Configuration getConf() {
return conf;
} public void setConf(Configuration conf) {
if (!(conf instanceof JobConf)) {
this.conf = new JobConf(conf);
} else {
this.conf = (JobConf) conf;
}
} /**
* Interface to sample using an {@link org.apache.hadoop.mapred.InputFormat}.
*/
public interface Sampler<K,V> {
/**
* For a given job, collect and return a subset of the keys from the
* input data.
*/
K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException;
} /**
* Samples the first n records from s splits.
* Inexpensive way to sample random data.
*/
public static class SplitSampler<K,V> implements Sampler<K,V> { private final int numSamples;
private final int maxSplitsSampled; /**
* Create a SplitSampler sampling <em>all</em> splits.
* Takes the first numSamples / numSplits records from each split.
* @param numSamples Total number of samples to obtain from all selected
* splits.
*/
public SplitSampler(int numSamples) {
this(numSamples, Integer.MAX_VALUE);
} /**
* Create a new SplitSampler.
* @param numSamples Total number of samples to obtain from all selected
* splits.
* @param maxSplitsSampled The maximum number of splits to examine.
*/
public SplitSampler(int numSamples, int maxSplitsSampled) {
this.numSamples = numSamples;
this.maxSplitsSampled = maxSplitsSampled;
} /**
* From each split sampled, take the first numSamples / numSplits records.
*/
@SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type
public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException {
InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks());
ArrayList<K> samples = new ArrayList<K>(numSamples);
int splitsToSample = Math.min(maxSplitsSampled, splits.length);
int splitStep = splits.length / splitsToSample;
int samplesPerSplit = numSamples / splitsToSample;
long records = 0;
for (int i = 0; i < splitsToSample; ++i) {
RecordReader<K,V> reader = inf.getRecordReader(splits[i * splitStep],
job, Reporter.NULL);
K key = reader.createKey();
V value = reader.createValue();
while (reader.next(key, value)) {
samples.add(key);
key = reader.createKey();
++records;
if ((i+1) * samplesPerSplit <= records) {
break;
}
}
reader.close();
}
return (K[])samples.toArray();
}
} /**
* Sample from random points in the input.
* General-purpose sampler. Takes numSamples / maxSplitsSampled inputs from
* each split.
*/
public static class RandomSampler<K,V> implements Sampler<K,V> {
private double freq;
private final int numSamples;
private final int maxSplitsSampled; /**
* Create a new RandomSampler sampling <em>all</em> splits.
* This will read every split at the client, which is very expensive.
* @param freq Probability with which a key will be chosen.
* @param numSamples Total number of samples to obtain from all selected
* splits.
*/
public RandomSampler(double freq, int numSamples) {
this(freq, numSamples, Integer.MAX_VALUE);
} /**
* Create a new RandomSampler.
* @param freq Probability with which a key will be chosen.
* @param numSamples Total number of samples to obtain from all selected
* splits.
* @param maxSplitsSampled The maximum number of splits to examine.
*/
public RandomSampler(double freq, int numSamples, int maxSplitsSampled) {
this.freq = freq;
this.numSamples = numSamples;
this.maxSplitsSampled = maxSplitsSampled;
} /**
* Randomize the split order, then take the specified number of keys from
* each split sampled, where each key is selected with the specified
* probability and possibly replaced by a subsequently selected key when
* the quota of keys from that split is satisfied.
*/
@SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type
public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException {
InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks());
ArrayList<K> samples = new ArrayList<K>(numSamples);
int splitsToSample = Math.min(maxSplitsSampled, splits.length); Random r = new Random();
long seed = r.nextLong();
r.setSeed(seed);
LOG.debug("seed: " + seed);
// shuffle splits
for (int i = 0; i < splits.length; ++i) {
InputSplit tmp = splits[i];
int j = r.nextInt(splits.length);
splits[i] = splits[j];
splits[j] = tmp;
}
// our target rate is in terms of the maximum number of sample splits,
// but we accept the possibility of sampling additional splits to hit
// the target sample keyset
for (int i = 0; i < splitsToSample ||
(i < splits.length && samples.size() < numSamples); ++i) {
RecordReader<K,V> reader = inf.getRecordReader(splits[i], job,
Reporter.NULL);
K key = reader.createKey();
V value = reader.createValue();
while (reader.next(key, value)) {
if (r.nextDouble() <= freq) {
if (samples.size() < numSamples) {
samples.add(key);
} else {
// When exceeding the maximum number of samples, replace a
// random element with this one, then adjust the frequency
// to reflect the possibility of existing elements being
// pushed out
int ind = r.nextInt(numSamples);
if (ind != numSamples) {
samples.set(ind, key);
}
freq *= (numSamples - 1) / (double) numSamples;
}
key = reader.createKey();
}
}
reader.close();
}
return (K[])samples.toArray();
}
} /**
* Sample from s splits at regular intervals.
* Useful for sorted data.
*/
public static class IntervalSampler<K,V> implements Sampler<K,V> {
private final double freq;
private final int maxSplitsSampled; /**
* Create a new IntervalSampler sampling <em>all</em> splits.
* @param freq The frequency with which records will be emitted.
*/
public IntervalSampler(double freq) {
this(freq, Integer.MAX_VALUE);
} /**
* Create a new IntervalSampler.
* @param freq The frequency with which records will be emitted.
* @param maxSplitsSampled The maximum number of splits to examine.
* @see #getSample
*/
public IntervalSampler(double freq, int maxSplitsSampled) {
this.freq = freq;
this.maxSplitsSampled = maxSplitsSampled;
} /**
* For each split sampled, emit when the ratio of the number of records
* retained to the total record count is less than the specified
* frequency.
*/
@SuppressWarnings("unchecked") // ArrayList::toArray doesn't preserve type
public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException {
InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks());
ArrayList<K> samples = new ArrayList<K>();
int splitsToSample = Math.min(maxSplitsSampled, splits.length);
int splitStep = splits.length / splitsToSample;
long records = 0;
long kept = 0;
for (int i = 0; i < splitsToSample; ++i) {
RecordReader<K,V> reader = inf.getRecordReader(splits[i * splitStep],
job, Reporter.NULL);
K key = reader.createKey();
V value = reader.createValue();
while (reader.next(key, value)) {
++records;
if ((double) kept / records < freq) {
++kept;
samples.add(key);
key = reader.createKey();
}
}
reader.close();
}
return (K[])samples.toArray();
}
} /**
* Write a partition file for the given job, using the Sampler provided.
* Queries the sampler for a sample keyset, sorts by the output key
* comparator, selects the keys for each rank, and writes to the destination
* returned from {@link
org.apache.hadoop.mapred.lib.TotalOrderPartitioner#getPartitionFile}.
*/
@SuppressWarnings("unchecked") // getInputFormat, getOutputKeyComparator
public static <K,V> void writePartitionFile(JobConf job,
Sampler<K,V> sampler) throws IOException {
final InputFormat<K,V> inf = (InputFormat<K,V>) job.getInputFormat();
int numPartitions = job.getNumReduceTasks();
K[] samples = sampler.getSample(inf, job);
LOG.info("Using " + samples.length + " samples");
RawComparator<K> comparator =
(RawComparator<K>) job.getOutputKeyComparator();
Arrays.sort(samples, comparator);
Path dst = new Path(TotalOrderPartitioner.getPartitionFile(job));
FileSystem fs = dst.getFileSystem(job);
if (fs.exists(dst)) {
fs.delete(dst, false);
}
SequenceFile.Writer writer = SequenceFile.createWriter(fs, job, dst,
job.getMapOutputKeyClass(), NullWritable.class);
NullWritable nullValue = NullWritable.get();
float stepSize = samples.length / (float) numPartitions;
int last = -1;
for(int i = 1; i < numPartitions; ++i) {
int k = Math.round(stepSize * i);
while (last >= k && comparator.compare(samples[last], samples[k]) == 0) {
++k;
}
writer.append(samples[k], nullValue);
last = k;
}
writer.close();
} /**
* Driver for InputSampler from the command line.
* Configures a JobConf instance and calls {@link #writePartitionFile}.
*/
public int run(String[] args) throws Exception {
JobConf job = (JobConf) getConf();
ArrayList<String> otherArgs = new ArrayList<String>();
Sampler<K,V> sampler = null;
for(int i=0; i < args.length; ++i) {
try {
if ("-r".equals(args[i])) {
job.setNumReduceTasks(Integer.parseInt(args[++i]));
} else if ("-inFormat".equals(args[i])) {
job.setInputFormat(
Class.forName(args[++i]).asSubclass(InputFormat.class));
} else if ("-keyClass".equals(args[i])) {
job.setMapOutputKeyClass(
Class.forName(args[++i]).asSubclass(WritableComparable.class));
} else if ("-splitSample".equals(args[i])) {
int numSamples = Integer.parseInt(args[++i]);
int maxSplits = Integer.parseInt(args[++i]);
if (0 >= maxSplits) maxSplits = Integer.MAX_VALUE;
sampler = new SplitSampler<K,V>(numSamples, maxSplits);
} else if ("-splitRandom".equals(args[i])) {
double pcnt = Double.parseDouble(args[++i]);
int numSamples = Integer.parseInt(args[++i]);
int maxSplits = Integer.parseInt(args[++i]);
if (0 >= maxSplits) maxSplits = Integer.MAX_VALUE;
sampler = new RandomSampler<K,V>(pcnt, numSamples, maxSplits);
} else if ("-splitInterval".equals(args[i])) {
double pcnt = Double.parseDouble(args[++i]);
int maxSplits = Integer.parseInt(args[++i]);
if (0 >= maxSplits) maxSplits = Integer.MAX_VALUE;
sampler = new IntervalSampler<K,V>(pcnt, maxSplits);
} else {
otherArgs.add(args[i]);
}
} catch (NumberFormatException except) {
System.out.println("ERROR: Integer expected instead of " + args[i]);
return printUsage();
} catch (ArrayIndexOutOfBoundsException except) {
System.out.println("ERROR: Required parameter missing from " +
args[i-1]);
return printUsage();
}
}
if (job.getNumReduceTasks() <= 1) {
System.err.println("Sampler requires more than one reducer");
return printUsage();
}
if (otherArgs.size() < 2) {
System.out.println("ERROR: Wrong number of parameters: ");
return printUsage();
}
if (null == sampler) {
sampler = new RandomSampler<K,V>(0.1, 10000, 10);
} Path outf = new Path(otherArgs.remove(otherArgs.size() - 1));
TotalOrderPartitioner.setPartitionFile(job, outf);
for (String s : otherArgs) {
FileInputFormat.addInputPath(job, new Path(s));
}
InputSampler.<K,V>writePartitionFile(job, sampler); return 0;
} public static void main(String[] args) throws Exception {
JobConf job = new JobConf(InputSampler.class);
InputSampler<?,?> sampler = new InputSampler(job);
int res = ToolRunner.run(sampler, args);
System.exit(res);
}
}
InputSampler
TotalOrderPartitioner实例
public class SortByTemperatureUsingTotalOrderPartitioner extends Configured
implements Tool
{
@Override
public int run(String[] args) throws Exception
{
JobConf conf = JobBuilder.parseInputAndOutput(this, getConf(), args);
if (conf == null) {
return -1;
}
conf.setInputFormat(SequenceFileInputFormat.class);
conf.setOutputKeyClass(IntWritable.class);
conf.setOutputFormat(SequenceFileOutputFormat.class);
SequenceFileOutputFormat.setCompressOutput(conf, true);
SequenceFileOutputFormat
.setOutputCompressorClass(conf, GzipCodec.class);
SequenceFileOutputFormat.setOutputCompressionType(conf,
CompressionType.BLOCK);
conf.setPartitionerClass(TotalOrderPartitioner.class);
InputSampler.Sampler<IntWritable, Text> sampler = new InputSampler.RandomSampler<IntWritable, Text>(
0.1, 10000, 10);
Path input = FileInputFormat.getInputPaths(conf)[0];
input = input.makeQualified(input.getFileSystem(conf));
Path partitionFile = new Path(input, "_partitions");
TotalOrderPartitioner.setPartitionFile(conf, partitionFile);
InputSampler.writePartitionFile(conf, sampler);
// Add to DistributedCache
URI partitionUri = new URI(partitionFile.toString() + "#_partitions");
DistributedCache.addCacheFile(partitionUri, conf);
DistributedCache.createSymlink(conf);
JobClient.runJob(conf);
return 0;
} public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(
new SortByTemperatureUsingTotalOrderPartitioner(), args);
System.exit(exitCode);
}
}
参考资料
1.《Hadoop技术内幕 深入理解MapReduce架构设计与实现原理》
2.http://www.cnblogs.com/xwdreamer/archive/2011/10/27/2296943.html
3.http://blog.oddfoo.net/2011/04/17/mapreduce-partition%E5%88%86%E6%9E%90-2/
Hadoop中Partition深度解析的更多相关文章
- Kakfa揭秘 Day4 Kafka中分区深度解析
Kakfa揭秘 Day4 Kafka中分区深度解析 今天主要谈Kafka中的分区数和consumer中的并行度.从使用Kafka的角度说,这些都是至关重要的. 分区原则 Partition代表一个to ...
- Hadoop中的InputFormat解析
1.InputFormat InputFormat是Hadoop平台上Mapreduce输入的规范,仅有两个抽象方法. List<InputSplit> getSplits(), 获取由输 ...
- Hadoop中Partition解析
1.解析Partition Map的结果,会通过partition分发到Reducer上,Reducer做完Reduce操作后,通过OutputFormat,进行输出,下面我们就来分析参与这个过程的类 ...
- Hadoop中Partition的定制
1.解析Partition Map的结果,会通过partition分发到Reducer上,Reducer做完Reduce操作后,通过OutputFormat,进行输出,下面我们就来分析参与这个过程的类 ...
- Kafka深度解析(如何在producer中指定partition)(转)
原文链接:Kafka深度解析 背景介绍 Kafka简介 Kafka是一种分布式的,基于发布/订阅的消息系统.主要设计目标如下: 以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能 ...
- Hadoop 中疑问解析
Hadoop 中疑问解析 FAQ问题剖析 一.HDFS 文件备份与数据安全性分析1 HDFS 原理分析1.1 Hdfs master/slave模型 hdfs采用的是master/slave模型,一个 ...
- 深度解析javascript中的浅复制和深复制
原文:深度解析javascript中的浅复制和深复制 在谈javascript的浅复制和深复制之前,我们有必要在来讨论下js的数据类型.我们都知道有Number,Boolean,String,Null ...
- 深度分析如何在Hadoop中控制Map的数量
深度分析如何在Hadoop中控制Map的数量 guibin.beijing@gmail.com 很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数 ...
- Hadoop中Yarnrunner里面submit Job以及AM生成 至Job处理过程源码解析
参考 http://blog.csdn.net/caodaoxi/article/details/12970993 Hadoop中Yarnrunner里面submit Job以及AM生成 至Job处理 ...
随机推荐
- SCU 4442 Party
二分图的最小点权覆盖. 非常感谢巨巨@islands_的解答,还帮我画了一个图. 题目保证给出的边构成的图是一个二分图. 如果没有第三种类型的$frog$,那么问题就很简单了.即选择哪些点,覆盖住所有 ...
- 深入浅出Spring(三) AOP详解
上次的博文深入浅出Spring(二) IoC详解中,我为大家简单介绍了一下Spring框架核心内容中的IoC,接下来我们继续讲解另一个核心AOP(Aspect Oriented Programming ...
- eclipse的一些部署
1. Eclipse导入一个项目Package Exporer-------右键------import------General------Existing Project into Workspa ...
- 用于解析通过JS的escape函数加密过的数据
function js_unescape($str) { $ret = ''; $len = strlen($str); for ($i = 0; $i < $len; $i++) { if ( ...
- prim 算法和 kruskal算法
Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...
- 2018/3/13 noiρ[rəʊ]模拟赛 125分
T1 60分暴力,水分也不会水,打表也不会打,正解是不可能写正解的,这辈子都写不出来正解的,虽然是zz题但是也拿不到分这样子. 正解:(啥?正解是sb组合数?这都他娘的想不到,真鸡儿丢人我自杀吧.) ...
- scanf输入字符串相关
http://blog.csdn.net/liuhui_8989/article/details/13398793 补充..输入s的时候不要把变量设置成string类型,设置成char数组类型.. ...
- [BZOJ1032][P1840] 祖玛 记忆化搜索 动态规划
描述 Description 某天,小x在玩一个经典小游戏——zumo.zumo游戏的规则是,给你一段长度为n的连续的彩色珠子,珠子的颜色不一定完全相同,但是,如果连续相同颜色的珠子大 ...
- python中后端数据序列化不显示中文的解决方法
我们在前后端交互的时候,让序列化的数据更友好的显示,我们会用到 import json js = json.loads('{"name": "多多"}') pr ...
- [SimpleOJ233]a xor b
题目大意: 给你一个数列,求所有区间最大值和次大只异或的最大值. 思路: 很容易想到一个O(n^2)的暴力. O(n)的单调栈做法似乎也很好想,不过考场上没想出来. 对于数列上的某一个数,我们维护在它 ...