带你剖析淘宝TDDL——Matrix层的分库分表配置与实现
前言
在开始讲解淘宝的TDDL(Taobao Distribute Data Layer)技术之前,请允许笔者先吐槽一番。首先要开喷的是淘宝的社区支持做的无比的烂,TaoCode开源社区上面,几乎从来都是有人提问,无人响应。再者版本迭代速度也同样差强人意,就目前而言TDDL5.0的版本已经全线开源(Group、Atom、Matrix)大家可以在Github上下载源码。
目录
一、互联网当下的数据库拆分过程
二、TDDL的架构原型
三、下载TDDL的Atom层和Group层源代码
四、Diamond简介
五、Diamond的安装和使用
六、动态数据源层的Master/Salve读写分离配置与实现
七、Matrix层的分库分表配置与实现(此章节由于特殊原因暂时隐藏)
一、互联网当下的数据库拆分过程
对于一个刚上线的互联网项目来说,由于前期活跃用户数量并不多,并发量也相对较小,所以此时企业一般都会选择将所有数据存放在一个数据库中进行访问操作。但随着后续的市场推广力度不断加强,用户数量和并发量不断上升,这时如果仅靠一个数据库来支撑所有访问压力,几乎是在自寻死路。所以一旦到了这个阶段,大部分Mysql DBA就会将数据库设置成读写分离状态,也就是一个Master节点对应多个Salve节点。经过Master/Salve模式的设计后,完全可以应付单一数据库无法承受的负载压力,并将访问操作分摊至多个Salve节点上,实现真正意义上的读写分离。但大家有没有想过,单一的Master/Salve模式又能抗得了多久呢?如果用户数量和并发量出现量级上升,单一的Master/Salve模式照样抗不了多久,毕竟一个Master节点的负载还是相对比较高的。为了解决这个难题,Mysql DBA会在单一的Master/Salve模式的基础之上进行数据库的垂直分区(分库)。所谓垂直分区指的是可以根据业务自身的不同,将原本冗余在一个数据库内的业务表拆散,将数据分别存储在不同的数据库中,同时仍然保持Master/Salve模式。经过垂直分区后的Master/Salve模式完全可以承受住难以想象的高并发访问操作,但是否可以永远高枕无忧了?答案是否定的,一旦业务表中的数据量大了,从维护和性能角度来看,无论是任何的CRUD操作,对于数据库而言都是一件极其耗费资源的事情。即便设置了索引,仍然无法掩盖因为数据量过大从而导致的数据库性能下降的事实,因此这个时候Mysql DBA或许就该对数据库进行水平分区(分表,sharding),所谓水平分区指的是将一个业务表拆分成多个子表,比如user_table0、user_table1、user_table2。子表之间通过某种契约关联在一起,每一张子表均按段位进行数据存储,比如user_table0存储1-10000的数据,而user_table1存储10001-20000的数据,最后user_table3存储20001-30000的数据。经过水平分区设置后的业务表,必然能够将原本一张表维护的海量数据分配给N个子表进行存储和维护,这样的设计在国内一流的互联网企业比较常见,如图1-1所示:
图1-1 水平分区
上述笔者简单的讲解了数据库的分库分表原理。接下来请大家认真思考下。原本一个数据库能够完成的访问操作,现在如果按照分库分表模式设计后,将会显得非常麻烦,这种麻烦尤其体现在访问操作上。因为持久层需要判断出对应的数据源,以及数据源上的水平分区,这种访问方式我们称之为访问“路由”。按照常理来说,持久层不应该负责数据访问层(DAL)的工作,它应该只关心one to one的操作形式,所以淘宝的TDDL框架诞生也就顺其自然了。
二、TDDL的架构原型
淘宝根据自身业务需求研发了TDDL(Taobao Distributed Data Layer)框架,主要用于解决分库分表场景下的访问路由(持久层与数据访问层的配合)以及异构数据库之间的数据同步,它是一个基于集中式配置的JDBC DataSource实现,具有分库分表、Master/Salve、动态数据源配置等功能。
就目前而言,许多大厂也在出一些更加优秀和社区支持更广泛的DAL层产品,比如Hibernate Shards、Ibatis-Sharding等。如果你要问笔者还为什么还要对TDDL进行讲解,那么笔者只能很无奈的表示公司要这么干,因为很多时候技术选型并不是笔者说了算,而是客户说了算。当笔者费劲所有努力在google上寻找TDDL的相关使用说明和介绍时,心里一股莫名的火已经开始在蔓延,对于更新缓慢(差不多一年没更新过SVN),几乎没社区支持(提问从不响应)的产品来说,除了蜗居在企业内部,必定走不了多远,最后的结局注定是悲哀的。好了,既然抱怨了一番,无论如何还是要坚持讲解完。TDDL位于数据库和持久层之间,它直接与数据库建立交道,如图1-2所示:
图1-2 TDDL所处领域模型定位
传说淘宝很早以前就已经对数据进行过分库分表处理,应用层连接多个数据源,中间有一个叫做DBRoute的技术对数据库进行统一的路由访问。DBRoute对数据进行多库的操作、数据的整合,让应用层像操作一个数据源一样操作多个数据库。但是随着数据量的增长,对于库表的分法有了更高的要求,例如,你的商品数据到了百亿级别的时候,任何一个库都无法存放了,于是分成2个、4个、8个、16个、32个……直到1024个、2048个。好,分成这么多,数据能够存放了,那怎么查询它?这时候,数据查询的中间件就要能够承担这个重任了,它对上层来说,必须像查询一个数据库一样来查询数据,还要像查询一个数据库一样快(每条查询要求在几毫秒内完成),TDDL就承担了这样一个工作(其他DAL产品做得更好),如图1-3所示:
图1-3 TDDL分库分表查询策略
上述笔者描述了TDDL在分库分表环境下的查询策略,那么接下来笔者有必要从淘宝官方copy它们自己对TDDL优点的一些描述,真实性不敢保证,毕竟没完全开源,和社区零支持,大家看一看就算了,别认真。
淘宝人自定的TDDL优点:
1、数据库主备和动态切换;
2、带权重的读写分离;
3、单线程读重试;
4、集中式数据源信息管理和动态变更;
5、剥离的稳定jboss数据源;
6、支持mysql和oracle数据库;
7、基于jdbc规范,很容易扩展支持实现jdbc规范的数据源;
8、无server,client-jar形式存在,应用直连数据库;
9、读写次数,并发度流程控制,动态变更;
10、可分析的日志打印,日志流控,动态变更;
注意:
TDDL必须要依赖diamond配置中心(diamond是淘宝内部使用的一个管理持久配置的系统,目前淘宝内部绝大多数系统的配置)。
接下来,笔者将会带领各位一起分析TDDL的体系架构。TDDL其实主要可以划分为3层架构,分别是Matrix层、Group层和Atom层。Matrix层用于实现分库分表逻辑,底层持有多个Group实例。而Group层和Atom共同组成了动态数据源,Group层实现了数据库的Master/Salve模式的写分离逻辑,底层持有多个Atom实例。最后Atom层(TAtomDataSource)实现数据库ip,port,password,connectionProperties等信息的动态推送,以及持有原子的数据源分离的JBOSS数据源)。
图1-4 TDDL体系结构
章节的最后,我们还需要对TDDL的原理进行一次剖析。因为我们知道持久层只关心对数据源的CRUD操作,而多数据源的访问,并不应该由它来关心。也就是说TDDL透明给持久层的数据源接口应该是统一且“单一”的,至于数据库到底如何分库分表,持久层无需知道,也无需编写对应的SQL去实行应对策略。这个时候对TDDL一些疑问就出现了,TDDL需要对SQL进行二次解析和拼装吗?答案是不解析仅拼装。说白了TDDL只需要从持久层拿到发出的SQL
再按照一些分库分表条件,进行特定的SQL扩充以此满足访问路路由操作。
以下是淘宝团队对TDDL的官方原理解释:
1、TDDL除了拿到分库分表条件外,还需要拿到order by、group by、limit、join等信息,SUM、
MAX、MIN等聚合函数信息,DISTINCT信息。具有这些关键字的SQL将会在单库和多库情况下进行,语义是不同的。TDDL必须对使用这些关键字的SQL返回的结果做出合适的处理;
2、TDDL行复制需要重新拼写SQL,带上sync_version字段;
3、不通过sql解析,因为TDDL遵守JDBC规范,它不可能去扩充JDBC规范里面的接口,所以只能通过SQL中加额外的字符条件(也就是HINT方式)或者ThreadLocal方式进行传递,前者使SQL过长,后者难以维护,开发debug时不容易跟踪,而且需要判定是在一条SQL执行后失效还是1个连接关闭后才失效;
4、TDDL现在也同时支持Hint方式和ThreadLocal方式传递这些信息;
带你剖析淘宝TDDL——Matrix层的分库分表配置与实现的更多相关文章
- 笔者带你剖析淘宝TDDL(TAOBAO DISTRIBUTE DATA LAYER)
注:本文部分内容引用本人博客http://gao-xianglong.iteye.com/blog/1973591 前言 在开始讲解淘宝的TDDL(Taobao Distribute Data L ...
- [转帖]剖析淘宝TDDL(TAOBAO DISTRIBUTE DATA LAYER)
剖析淘宝TDDL(TAOBAO DISTRIBUTE DATA LAYER) 博客分类: 原博客地址: http://qq85609655.iteye.com/blog/2035176 distrib ...
- 淘宝TDDL深入浅出
前言 在开始讲解淘宝的 TDDL(Taobao Distribute Data Layer) 技术之前,请允许笔者先吐槽一番.首先要开喷的是淘宝的社区支持做的无比的烂, TaoCode 开源社区上面, ...
- TDDL:来自淘宝的分布式数据层
淘宝根据自身业务需求研发了TDDL(Taobao Distributed Data Layer)框架,主要用于解决分库分表场景下的访问路由(持久层与数据访问层的配合)以及异构数据库之间的数据同步,它是 ...
- 淘宝TDDL配置以及使用
此章节具体介绍一下淘宝TDDL具体配置和使用 1. Spring配置文件配置:================spring-mybatis.xml 中配置============= <bean ...
- TDDL-剖析淘宝TDDL
TDDL-剖析淘宝TDDL 学习了:https://blog.csdn.net/sumj7011/article/details/78286741 Taobao Distribute Data Lay ...
- TDDL分库分表规则
规则如下: 判断一个ID在哪个库里的公式是:id % 4 / 2判断一个ID在哪个表里的公式是:id % 4 % 2 其中4表示总共有多少个分表,2表示总共有多少个数据库:上面这个例子,表示总共有2个 ...
- 淘宝分布式数据层TDDL
剖析淘宝 TDDL ( TAOBAO DISTRIBUTE DATA LAYER ) 注:原文:http://gao-xianglong.iteye.com/blog/1973591 前言 在开始 ...
- 《笔者带你剖析Apache Commons DbUtils 1.6》(转)
前言 关于Apache的DbUtils中间件或许了解的人并不多,大部分开发人员在生成环境中更 多的是依靠Hibernate.Ibatis.Spring JDBC.JPA等大厂提供的持久层技术解决方案, ...
随机推荐
- windows上操作git基本命令
今天准备整理一下代码,重温一下Git的基本命令,好久不用忘得差不多了. 1. 进入某个目录: 进入D盘,然后进入D盘的名为git的文件夹: $ cd D: $ cd Git 2. 返回上一级目录: $ ...
- from sklearn.datasets import make_classification创建分类数据集
make_classification创建用于分类的数据集,官方文档 例子: ### 创建模型 def create_model(): # 生成数据 from sklearn.datasets imp ...
- 解决使用 aapt 中遇到的问题
|---- yum install glibc.i686 libstdc++.i686 zlib.i686 -y; .csharpcode, .csharpcode pre { font-size: ...
- Javascrpt 速成篇】 二:js面向对象
现实世界的对象由形态和行为组成,js中对应的是属性和函数. <!DOCTYPE html> <html> <head> <meta charset=" ...
- BZOJ4292 PA2015 Równanie 【暴力水题】
BZOJ4292 PA2015 Równanie Description 对于一个正整数n,定义f(n)为它十进制下每一位数字的平方的和.现在给定三个正整数k,a,b,请求出满足a<=n< ...
- 如何删除 Windows 10 系统生成的 WindowsApps 文件夹
如果曾经修改过 Windows 10 应用安装路径到非系统盘,那么那个盘下就会生成一些文件夹.如果以后重装了系统或者应用删除了,挪位置了,那些文件夹依然在那里——删不掉! 大家都知道这是权限问题,然而 ...
- python笔记-8(logging模块、re模块、栈与队列)
一.Logging模块日志 1.logging导入 Import logging 2.知道5个日志级别的等级关系 Debug->info->warning->error->cr ...
- python模块--hashlib
用于加密相关的操作,3.x里代替了md5模块和sha模块,主要提供SHA1,SHA224,SHA256,SHA384,SHA512,MD5算法 import hashlib m = hashlib.m ...
- ballerina 学习五 使用composer管理ballerina 项目
1. 启动 composer 备注: 因为这个命名和php的一个包管理工具重名了,所以可能需要使用决定路径 比如我的mac系统使用:Library/Ballerina/ballerina-0.970. ...
- sqlopsstudio 微软开源跨平台sql server 连接工具
sqlopsstudio 微软开源的sql server 连接工具,跨平台,基于vscode 分之代码. 项目地址: https://github.com/Microsoft/sqlopsstudi ...