使用FLANN进行特征点匹配

目标

在本教程中我们将涉及以下内容:

  • 使用 FlannBasedMatcher 接口以及函数 FLANN 实现快速高效匹配( 快速最近邻逼近搜索函数库(Fast Approximate Nearest Neighbor Search Library) )

理论

代码

这个教程的源代码如下所示。你还可以从 以下链接下载得到源代码

#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp" using namespace cv; void readme(); /** @function main */
int main( int argc, char** argv )
{
if( argc != 3 )
{ readme(); return -1; } Mat img_1 = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
Mat img_2 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE ); if( !img_1.data || !img_2.data )
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; } //-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 400; SurfFeatureDetector detector( minHessian ); std::vector<KeyPoint> keypoints_1, keypoints_2; detector.detect( img_1, keypoints_1 );
detector.detect( img_2, keypoints_2 ); //-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor; Mat descriptors_1, descriptors_2; extractor.compute( img_1, keypoints_1, descriptors_1 );
extractor.compute( img_2, keypoints_2, descriptors_2 ); //-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_1, descriptors_2, matches ); double max_dist = 0; double min_dist = 100; //-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_1.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
} printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist ); //-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist )
//-- PS.- radiusMatch can also be used here.
std::vector< DMatch > good_matches; for( int i = 0; i < descriptors_1.rows; i++ )
{ if( matches[i].distance < 2*min_dist )
{ good_matches.push_back( matches[i]); }
} //-- Draw only "good" matches
Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); //-- Show detected matches
imshow( "Good Matches", img_matches ); for( int i = 0; i < good_matches.size(); i++ )
{ printf( "-- Good Match [%d] Keypoint 1: %d -- Keypoint 2: %d \n", i, good_matches[i].queryIdx, good_matches[i].trainIdx ); } waitKey(0); return 0;
} /** @function readme */
void readme()
{ std::cout << " Usage: ./SURF_FlannMatcher <img1> <img2>" << std::endl; }

解释

结果

  1. 这里是第一张图特征点检测结果:

  2. 此外我们通过控制台输出FLANN匹配关键点结果:

翻译者

Shuai Zheng, <kylezheng04@gmail.com>, http://www.cbsr.ia.ac.cn/users/szheng/

from: http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/features2d/feature_flann_matcher/feature_flann_matcher.html#feature-flann-matcher

OpenCV使用FLANN进行特征点匹配的更多相关文章

  1. OpenCV 使用FLANN进行特征点匹配

    #include <stdio.h> #include <iostream> #include "opencv2/core/core.hpp" #inclu ...

  2. 《opencv学习》 之 特征检测与匹配

    这几天学习SURF特征检测,直接看的视频和书本有点吃不消,现在是基本看懂了,如果写博客记录没有必要,因为网上都差不多,笔记都在书上了,以下是个人认为比较浅显易懂的文章,当然海有很多好文章我没看到. 看 ...

  3. sift、surf、orb 特征提取及最优特征点匹配

    目录 sift sift特征简介 sift特征提取步骤 surf surf特征简介 surf特征提取步骤 orb orb特征简介 orb特征提取算法 代码实现 特征提取 特征匹配 附录 sift si ...

  4. Opencv中使用Surf特征实现图像配准及对透视变换矩阵H的平移修正

    图像配准需要将一张测试图片按照第二张基准图片的尺寸.角度等形态信息进行透视(仿射)变换匹配,本例通过Surf特征的定位和匹配实现图像配准. 配准流程: 1. 提取两幅图像的Surf特征 2. 对Sur ...

  5. Opencv Sift和Surf特征实现图像无缝拼接生成全景图像

    Sift和Surf算法实现两幅图像拼接的过程是一样的,主要分为4大部分: 1. 特征点提取和描述 2. 特征点配对,找到两幅图像中匹配点的位置 3. 通过配对点,生成变换矩阵,并对图像1应用变换矩阵生 ...

  6. 第二篇 特征点匹配以及openvslam中的相关实现详解

    配置文件 在进入正题之前先做一些铺垫,在openvslam中,配置文件是必须要正确的以.yaml格式提供,通常需要指明使用的相机模型,ORB特征检测参数,跟踪参数等. #==============# ...

  7. 【macOS】 在OpenCV下训练Haar特征分类器

    本教程基于以下环境 macOS 10.12.6,OpenCV 3.3.0,python 3.6.由于网上基于masOS系统的教程太少,想出一篇相关教程造福大家-本文旨在学习如何在opencv中基于ha ...

  8. OpenCV教程(47) sift特征和surf特征

         在前面三篇教程中的几种角检测方法,比如harris角检测,都是旋转无关的,即使我们转动图像,依然能检测出角的位置,但是图像缩放后,harris角检测可能会失效,比如下面的图像,图像放大之前可 ...

  9. opencv surf特征点匹配拼接源码

    http://blog.csdn.net/huixingshao/article/details/42672073 /** * @file SURF_Homography * @brief SURF ...

随机推荐

  1. [BZOJ3672][Noi2014]购票 斜率优化+点分治+cdq分治

    3672: [Noi2014]购票 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 1749  Solved: 885[Submit][Status][ ...

  2. 保存最后N个元素

    cookbook系列 问题:对要搜索的值的最后几项做个有限的历史记录. 方案: #coding=utf- from collections import deque def search(lines, ...

  3. VIM配置示例

    以下是我习惯的vim配置,做个记录~_~ " 文件编码 set fileencoding=utf- set encoding=utf- set termencoding=utf- " ...

  4. shell脚本中${var1:-var2}

    在一个shell脚本中看见一行代码: DATE=${:-`date "+%Y%m%d" -d "-1 day"`} 查了一下 ${var1:-var2} 这种结 ...

  5. HDU - 4777 离线树状数组

    离线树状数组搞一搞. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #de ...

  6. php抓取一个页面的图片

    思路: 1.找到一个页面 2.正则过滤所有的img 3.正则过滤出所有的src的属性 4.获取链接信息,写入文件 file_get_contents(), file_put_contents() 5. ...

  7. 牛客练习赛9 F - 珂朵莉的约数

    题目描述 珂朵莉给你一个长为n的序列,有m次查询 每次查询给两个数l,r 设s为区间[l,r]内所有数的乘积 求s的约数个数mod 1000000007 输入描述: 第一行两个正整数n,m第二行一个长 ...

  8. 洛谷P1088 火星人 [STL]

    题目传送门 火星人 格式难调,题面就不放了. 分析: 这道题目不得不又让人感叹,还是$STL$大法好!!! $C++$的$algorithm$库中自带有$next\_permutation()$和$p ...

  9. 什么是P问题、NP问题和NPC问题

    为了迎接我的期末考试,认真的看了一下关于NP完全性理论这一章,奈何课本上说的我怎么都看不懂,所以找了个博客认真研究了一下,同样贴出来分享给大家,大牛就是大牛,把问题说的很明白,看完后受益匪浅.其中有一 ...

  10. [BZOJ4868][六省联考2017]期末考试(三分)

    4868: [Shoi2017]期末考试 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 964  Solved: 439[Submit][Status ...