这个题。。我们可以想到用递推写!!qwq(好吧,其实我的DP水平不高啊qwq)

就是我们以两个为单位(一共九种组合情况),然后往后面推下一位的情况。

通过手动模拟,我们可以找到它们之间的递推关系(详见代码)

先放上我的暴力代码。。。。(60分)

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define mod 1000000007
using namespace std;
long long f[2][10];
int t,cnt=1;
struct Node{int id,que;long long ans=0;}node[1010];
bool cmp1(struct Node x,struct Node y)
{
if(x.que<y.que) return 1;
else return 0;
}
bool cmp2(struct Node x,struct Node y)
{
if(x.id<y.id) return 1;
else return 0;
}
inline int read()
{
int f=1,x=0; char ch=getchar();
while(ch<'0'||ch>'9')
{
if(ch=='-') f=-1;
ch=getchar();
}
while(ch<='9'&&ch>='0')
{
x=x*10+ch-'0';
ch=getchar();
}
return x*f;
}
int main()
{
freopen("food.in","r",stdin);
freopen("food.out","w",stdout);
t=read();
//scanf("%d",&t);
for(int i=1;i<=t;i++) node[i].que=read(),node[i].id=i;
//scanf("%d",&node[i].que),node[i].id=i;
sort(node+1,node+1+t,cmp1);
//cout<<endl;
//for(int i=1;i<=t;i++)
// printf("%d ",node[i].que);
f[0][1]=2;
f[0][2]=3;
f[0][3]=2;
f[0][4]=3;
f[0][5]=2;
f[0][6]=2;
f[0][7]=2;
f[0][8]=2;
f[0][9]=2;
while(node[cnt].que==1) node[cnt].ans=3,cnt++;
while(node[cnt].que==2) node[cnt].ans=9,cnt++;
while(node[cnt].que==3) node[cnt].ans=20,cnt++;
for(int i=1;i<=node[t].que-3;i++)
{
f[1][1]=(f[0][4]+f[0][8])%mod;
f[1][2]=(f[0][1]+f[0][4]+f[0][8])%mod;
f[1][3]=(f[0][1]+f[0][4])%mod;
f[1][4]=(f[0][2]+f[0][5]+f[0][7])%mod;
f[1][5]=(f[0][2]+f[0][7])%mod;
f[1][6]=(f[0][2]+f[0][5])%mod;
f[1][7]=(f[0][6]+f[0][9])%mod;
f[1][8]=(f[0][3]+f[0][9])%mod;
f[1][9]=(f[0][3]+f[0][6])%mod;
//for(int j=1;j<10;j++)
// printf("f[1][%d]=%lld\n",j,f[1][j]);
for(int j=1;j<10;j++)
swap(f[0][j],f[1][j]);
while(i==node[cnt].que-3)
{
long long ans=0;
for(int j=1;j<10;j++)
ans=(ans+f[0][j])%mod;
node[cnt].ans=ans;
// cout<<"ans="<<ans<<endl;
cnt++;
}
}
sort(node+1,node+1+t,cmp2);
for(int i=1;i<=t;i++)
printf("%lld\n",node[i].ans%mod);
return 0;
}

然后我们看到数据范围。。。好大呀qwq线性算法肯定会T啊qwq,那。。。。写矩阵加速吧!qwq

其实有了暴力程序之后矩阵很好写(就是把对应的行和列上面的数设成1,然后做一次矩阵乘法就相当于一次转移。

详见代码:

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#define mod 1000000007
using namespace std;
int t;
int f[10];
struct Node{long long m[10][10];}node;
inline Node mul(Node x,Node y)
{
Node cur;
for(int i=1;i<=9;i++)
for(int j=1;j<=9;j++)
cur.m[i][j]=0;
for(int i=1;i<=9;i++)
for(int j=1;j<=9;j++)
for(int k=1;k<=9;k++)
cur.m[i][j]=(cur.m[i][j]+x.m[i][k]*y.m[k][j])%mod;
return cur; }
inline void solve(Node x)
{
int cur[10];
memset(cur,0,sizeof(cur));
for(int j=1;j<=9;j++)
for(int k=1;k<=9;k++)
cur[j]=(cur[j]+f[k]*x.m[k][j])%mod;
for(int i=1;i<=9;i++)
f[i]=cur[i];
}
int main()
{
scanf("%d",&t);
while(t--)
{
for(int i=1;i<=9;i++)
for(int j=1;j<=9;j++)
node.m[i][j]=0;
node.m[1][4]=1,node.m[1][8]=1;
node.m[2][1]=1,node.m[2][4]=1,node.m[2][8]=1;
node.m[3][1]=1,node.m[3][4]=1;
node.m[4][2]=1,node.m[4][5]=1,node.m[4][7]=1;
node.m[5][2]=1,node.m[5][7]=1;
node.m[6][2]=1,node.m[6][5]=1;
node.m[7][6]=1,node.m[7][9]=1;
node.m[8][3]=1,node.m[8][9]=1;
node.m[9][3]=1,node.m[9][6]=1;
memset(f,0,sizeof(f));
int n;
for(int i=1;i<=9;i++) f[i]=1;
scanf("%d",&n);
n-=2;
while(n)
{
if(n&1) solve(node);
node=mul(node,node);
n>>=1;
}
long long ans=0;
for(int i=1;i<=9;i++)
ans=(ans+f[i])%mod;
printf("%lld\n",ans%mod);
}
return 0;
}

食物(矩阵快速幂)(DP)的更多相关文章

  1. codeforces 691E 矩阵快速幂+dp

    传送门:https://codeforces.com/contest/691/problem/E 题意:给定长度为n的序列,从序列中选择k个数(可以重复选择),使得得到的排列满足xi与xi+1异或的二 ...

  2. P1357 花园 (矩阵快速幂+ DP)

    题意:一个只含字母C和P的环形串 求长度为n且每m个连续字符不含有超过k个C的方案数 m <= 5  n <= 1e15 题解:用一个m位二进制表示状态 转移很好想 但是这个题是用矩阵快速 ...

  3. BZOJ1009 矩阵快速幂+DP+KMP

    Problem 1009. -- [HNOI2008]GT考试 1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: ...

  4. Codeforces 576D Flights for Regular Customers 矩阵快速幂+DP

    题意: 给一个$n$点$m$边的连通图 每个边有一个权值$d$ 当且仅当当前走过的步数$\ge d$时 才可以走这条边 问从节点$1$到节点$n$的最短路 好神的一道题 直接写做法喽 首先我们对边按$ ...

  5. COJ 1208 矩阵快速幂DP

    题目大意: f(i) 是一个斐波那契数列 , 求sum(f(i)^k)的总和 由于n极大,所以考虑矩阵快速幂加速 我们要求解最后的sum[n] 首先我们需要思考 sum[n] = sum[n-1] + ...

  6. Codeforces 954 dijsktra 离散化矩阵快速幂DP 前缀和二分check

    A B C D 给你一个联通图 给定S,T 要求你加一条边使得ST的最短距离不会减少 问你有多少种方法 因为N<=1000 所以N^2枚举边数 迪杰斯特拉两次 求出Sdis 和 Tdis 如果d ...

  7. Codeforces 989E A Trance of Nightfall 矩阵快速幂+DP

    题意:二维平面上右一点集$S$,共$n$个元素,开始位于平面上任意点$P$,$P$不一定属于$S$,每次操作为选一条至少包含$S$中两个元素和当前位置$P$的直线,每条直线选取概率相同,同一直线上每个 ...

  8. BZOJ1009: [HNOI2008]GT考试 (矩阵快速幂 + DP)

    题意:求一个长度为n的数字字符串 (n <= 1e9) 不出现子串s的方案数 题解:用f i,j表示长度为i匹配到在子串j的答案 用kmp的失配函数预处理一下 然后这个转移每一个都是一样的 所以 ...

  9. bzoj2004 矩阵快速幂优化状压dp

    https://www.lydsy.com/JudgeOnline/problem.php?id=2004 以前只会状压dp和矩阵快速幂dp,没想到一道题还能组合起来一起用,算法竞赛真是奥妙重重 小Z ...

  10. ZZNU 2182 矩阵dp (矩阵快速幂+递推式 || 杜教BM)

    题目链接:http://47.93.249.116/problem.php?id=2182 题目描述 河神喜欢吃零食,有三种最喜欢的零食,鱼干,猪肉脯,巧克力.他每小时会选择一种吃一包. 不幸的是,医 ...

随机推荐

  1. 在Core环境下用WebRequest连接上远程的web Api 实现数据的简单CRUD(附Git地址)

    本文所有的东西都是在dot Net Core 1.1环境+VS2017保证测试通过. 本文接着上次文章接着写的,不了解上篇文章的可能看着有点吃力.我尽量让大家都能看懂.这是上篇文章的连接http:// ...

  2. 不同应用场景的10个Linux面试问题与解答

    本文由 极客范 - 小道空空 翻译自 Avishek Kumar.欢迎加入极客翻译小组,同我们一道翻译与分享.转载请参见文章末尾处的要求. 这一次我们不再介绍某个特定主题的Linux面试问题,而是随机 ...

  3. win7下IIS的安装和配置图文教程

    1. 首先是安装IIS.打开控制面板,找到”程序与功能”,点进去 2. 点击左侧”打开或关闭Windows功能” 3. 找到”Internet 信息服务”,按照下图打勾即可 等待安装完成 4. 安装完 ...

  4. sqlserver里常用的语法

    bb 为nvarchar(50)CAST(bb AS int) select MAX(CAST(bb AS int)) from AAA

  5. 创建数据库sql语句

    create database JXGL; go create table S( sno char(10)primary key not null, sname nvarchar(10) not nu ...

  6. 微信小程序(应用号)开发教程

    本文档将带你一步步创建完成一个微信小程序,并可以在手机上体验该小程序的实际效果.这个小程序的首页将会显示欢迎语以及当前用户的微信头像,点击头像,可以在新开的页面中查看当前小程序的启动日志.下载源码 1 ...

  7. Opencv 分水岭分割图片

    #include <iostream>#include <opencv2/opencv.hpp> using namespace std;using namespace cv; ...

  8. 优化mysql slave的同步速度

    测试环境:Red Hat Enterprise Linux Server release 6.3 (Santiago)Server version: 5.6.22-log MySQL Communit ...

  9. vagrant 安装与配置

    1.下载vagrant的安装包 http://downloads.vagrantup.com/ 2.解压安装 3.安装box环境   4.安装成功显示 5.提示要安装virbox

  10. 利用django中间件CsrfViewMiddleware防止csrf攻击

    一.在django后台处理 1.将django的setting中的加入django.contrib.messages.middleware.MessageMiddleware,一般新建的django项 ...