SPOJ-394-ACODE - Alphacode / dp
ACODE - Alphacode
Alice and Bob need to send secret messages to each other and are discussing ways to encode their messages:
Alice: “Let’s just use a very simple code: We’ll assign ‘A’ the code word 1, ‘B’ will be 2, and so on down to ‘Z’ being assigned 26.”
Bob: “That’s a stupid code, Alice. Suppose I send you the word ‘BEAN’ encoded as 25114. You could decode that in many different ways!”
Alice: “Sure you could, but what words would you get? Other than ‘BEAN’, you’d get
‘BEAAD’, ‘YAAD’, ‘YAN’, ‘YKD’ and ‘BEKD’. I think you would be able to figure out the
correct decoding. And why would you send me the word ‘BEAN’ anyway?”Bob: “OK, maybe that’s a bad example, but I bet you that if you got a string of length 5000
there would be tons of different decodings and with that many you would find at least two
different ones that would make sense.”Alice: “How many different decodings?”
Bob: “Jillions!”
For some reason, Alice is still unconvinced by Bob’s argument, so she requires a program that will
determine how many decodings there can be for a given string using her code.
Input
Input will consist of multiple input sets. Each set will consist of a single line of at most 5000 digits representing a
valid encryption (for example, no line will begin with a 0). There will be no spaces between the digits.
An input line of ‘0’ will terminate the input and should not be processed.
Output
For each input set, output the number of possible decodings for the input string. All answers will be
within the range of a 64 bit signed integer.
Example
Input: 25114
1111111111
3333333333
0 Output: 6
89
1
递推方程很容易得到,一个重要的问题是对'0'的处理,譬如 "90" "1001" ,显然这些都是非法数据,我们在处理时要当心。
#include<bits/stdc++.h>
using namespace std;
typedef unsigned long long LL;
char s[];
LL f[];
int main()
{
int n,i,j,k;
while(){
scanf("%s",s+);
n=strlen(s+);
if(n == && s[] == '') break;
f[]=;
for(i=;i<=n;++i){
f[i]=;
if(s[i]!='') f[i]+=f[i-];
if(i> && s[i-]=='') f[i]+=f[i-];
if(i> && s[i-]=='' && s[i]>=''&& s[i]<='') f[i]+=f[i-];
}
cout<<f[n]<<endl;
}
return ;
}
SPOJ-394-ACODE - Alphacode / dp的更多相关文章
- 【BZOJ3769】spoj 8549 BST again DP(记忆化搜索?)
[BZOJ3769]spoj 8549 BST again Description 求有多少棵大小为n的深度为h的二叉树.(树根深度为0:左右子树有别:答案对1000000007取模) Input 第 ...
- spoj 394
每段可以连续的串的可能性是个Fibonacci数列 但是直接dp更好吧~~ #include <cstdio> #include <cstring> using names ...
- spoj Balanced Numbers(数位dp)
一个数字是Balanced Numbers,当且仅当组成这个数字的数,奇数出现偶数次,偶数出现奇数次 一下子就相到了三进制状压,数组开小了,一直wa,都不报re, 使用记忆化搜索,dp[i][s] 表 ...
- [spoj Favorite Dice ][期望dp]
(1)https://vjudge.net/problem/SPOJ-FAVDICE 题意:有一个n面的骰子,每一面朝上的概率相同,求所有面都朝上过至少一次的总次数期望. 题解:令dp[i]表示 i ...
- poj 2033 Alphacode (dp)
Alphacode Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 13378 Accepted: 4026 Descri ...
- SPOJ 423 Assignments 状态DP
这个题目搁置了这么久,终于搞完了. 给n个人分配n个课程,已经告诉了你n个人对哪几门感兴趣,问最多有多少种分配方式 我刚开始都没找到这怎么还可以状态dp,哪来的状态转移,想用暴力DFS,果断TLE的妥 ...
- SPOJ Favorite Dice(概率dp)
题意: 一个骰子,n个面,摇到每一个面的概率都一样.问你把每一个面都摇到至少一次需要摇多少次,求摇的期望次数 题解: dp[i]:已经摇到i个面,还需要摇多少次才能摇到n个面的摇骰子的期望次数 因为我 ...
- spoj 1812 LCS2(SAM+DP)
[题目链接] http://www.spoj.com/problems/LCS2/en/ [题意] 求若干个串的最长公共子串. [思路] SAM+DP 先拿个串建个SAM,然后用后面的串匹配,每次将所 ...
- 【SPOJ 2319】 BIGSEQ - Sequence (数位DP+高精度)
BIGSEQ - Sequence You are given the sequence of all K-digit binary numbers: 0, 1,..., 2K-1. You need ...
随机推荐
- android 显示internet 图片
try { HttpGet httpRequest = new HttpGet(edtUrl.getText() .toString()); HttpClient httpclient = new D ...
- centos7命令2
都代表一个程序find / -name '*name*' 查找根目录下的包含name的文件名 权限不足的话在命令前面加上sudo find / -size 1G 查找根目录下文件大小为1G的文件 fi ...
- iOS开发之plist文件操作
之前在想用代码去实现很多界面上能用interface builder可以拖进去的功能,现在想想真是够无知的啊.不仅效率低下,而且对于代码的维护带来不少麻烦,这段时间一直在反思看了design+code ...
- Python中正则模块re.compile、re.match及re.search函数用法
import rehelp(re.compile)'''输出结果为:Help on function compile in module re: compile(pattern, flags=0) C ...
- SQL学习笔记之MySQL查询的三层解析
Mysqld的三层结构: SQL类型: DDL:数据库对象定义语言 对库和表的定义 DML:操作语言 DCL:控制语言 结构化的查询语言:select * from user; 执行该语句时: 1.连 ...
- OpenStack之Keystone模块
一.Keystone介绍 OpenStack Identity(Keystone)服务为运行OpenStack Compute上的OpenStack云提供了认证和管理用户.帐号和角色信息服务,并为Op ...
- Python3.x:正则 re.findall()的用法
Python3.x:正则 re.findall()的用法 概念: 语法:findall(pattern, string, flags=0) 说明:返回string中所有与pattern相匹配的全部字串 ...
- 软件测试技术作业3---PrintPrimes()
一.代码部分: private static void printPrimes (int n) { int curPrime; // Value currently considered for pr ...
- MySQL多版本并发控制机制(MVCC)-源码浅析
MySQL多版本并发控制机制(MVCC)-源码浅析 前言 作为一个数据库爱好者,自己动手写过简单的SQL解析器以及存储引擎,但感觉还是不够过瘾.<<事务处理-概念与技术>>诚然 ...
- python error: curl: (1) Protocol "'https" not supported or disabled in libcurl
python 调用curl访问一个网页时,出现error: curl: (1) Protocol "'https" not supported or disabled in lib ...