hdu 5800 To My Girlfriend(背包变形)
To My Girlfriend
Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1326 Accepted Submission(s): 515
I never forget the moment I met with you.You carefully asked me: "I have a very difficult problem. Can you teach me?".I replied with a smile, "of course"."I have n items, their weight was a[i]",you said,"Let's define f(i,j,k,l,m) to be the number of the subset of the weight of n items was m in total and has No.i and No.j items without No.k and No.l items.""And then," I asked.You said:"I want to know
Sincerely yours,
Liao
Each case contains 2 integers n, s (4≤n≤1000,1≤s≤1000). The next line contains n numbers: a1,a2,…,an (1≤ai≤1000).
4 4
1 2 3 4
4 4
1 2 3 4
8
就是给你 n个数 其中(序号i,j)是必选的,(序号k,l)是必不选的.使得其中的子集在n个数中的总权值为m.
例如样例
f(1,2,3,4)=1 f(2,1,3,4)=1 f(1,3,2,4)=1 f(3,1,2,4)=1
f(1,2,4,3)=1 f(2,1,4,3)=1 f(1,3,4,2)=1 f(3,1,4,2)=1 所以答案为8.
个人感想:
看了一下题目,我基本没什么思路,然后喵了一下题解,说是dp,然后我想了一个晚上..我觉得自己真是弱鸡,还是没怎么想到,看了网上题解,可以推出朴素的O(n^3)算法,我尼玛我一点感觉也没,我都不知道怎么推出朴素了..我反而悟出了这道题的前2维的计数,但是我就想不到怎么把必选和不选的排掉.很烦躁.
然后还是看了一下转载了.但是我就想不通最后两维,好艰难啊.
今天早上还是琢磨了一下,我才把它弄懂.
se->select.
dp[i][j][se][nse] 代表 前i个数,和为j,有se个数必选,有nse个必不选的方案数.
是不是很凌乱.我们一步步来,先想前2维.我到不知道为什么别人数是个背包,千万别和背包混一起,我感觉会走弯路,不过确实也类似了.
我的开始是这样想的.
首先 dp[i][j].前i个数和为j,对于当前这个数,如果选择了,就得+dp[i-1][j-a[i]],这时如果不选,+dp[i-1][j].这个先想明白.
然后再想到第3维(第4维也是类似).
dp[i][j][1]+=dp[i-1][j][1] ,首先前[i-1]个数和为j的方案数,而且其中有1个是必选了,但没有选a[i].
dp[i][j][1]+=dp[i-1][j-a[i]][1],首先前[i-1]个数和为j的方案数,而且其中有1个是必选了,,但选了a[i].a[i],不是必选的.
dp[i][j][1]+=dp[i-1][j-a[i]][0],首先前[i-1]个数和为j的方案数,而且其中有1个是必选了,,选了a[i].a[i]是必选的.
这样理解应该懂了吧,其中1维也是这样的思想..这就推出来了几种必选和必不选的方案数了.
分析: 计数dp.
转载:http://blog.csdn.net/zzz805/article/details/52135094
#include <bits/stdc++.h> using namespace std;
const int mod=1e9+;
int dp[][][][];
int n,s,T;
int a[];
int main()
{
scanf("%d",&T);
for(;T>;T--)
{
scanf("%d%d",&n,&s);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
memset(dp,,sizeof(dp));
dp[][][][]=;
for(int i=;i<=n;i++) //前i件物品
for(int j=;j<=s;j++) //背包当前容量为j
for(int x=;x<=;x++) //dp[i][j]x][y]中有x个物品是属于必选的
for(int y=;y<=;y++) //dp[i][j][x][y]中有y个物品是属于不能选的
{
dp[i][j][x][y]=(dp[i][j][x][y]+dp[i-][j][x][y])%mod; //第i件item不选
if (y->=) dp[i][j][x][y]=(dp[i][j][x][y]+dp[i-][j][x][y-])%mod;
if (j-a[i]>=)
{
dp[i][j][x][y]=(dp[i][j][x][y]+dp[i-][j-a[i]][x][y])%mod;
if (x->=) dp[i][j][x][y]=(dp[i][j][x][y]+dp[i-][j-a[i]][x-][y])%mod;
}
}
long long ans=;
for(int j=;j<=s;j++) ans=(ans+dp[n][j][][])%mod;
ans=(ans*)%mod;
printf("%lld\n",ans);
}
return ;
}
hdu 5800 To My Girlfriend(背包变形)的更多相关文章
- HDU 5800 To My Girlfriend 背包
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5800 To My Girlfriend Time Limit: 2000/2000 MS (Java ...
- hdu 5800 To My Girlfriend + dp
传送门:hdu 5800 To My Girlfriend 题意:给定n个物品,其中i,j必选,l,m必不选,问组成体积为s的方法一共有多少种 思路:定义dp[i][j][s1][s2],表示前i种物 ...
- HDU 5800 To My Girlfriend
背包变形.dp[i][j][g][h]表示前i个数字,和为j,有g个必选,有h个必不选的方案数. 答案为sum{dp[n][j][2][2]}*4 #pragma comment(linker, &q ...
- HDU 5534 Partial Tree (完全背包变形)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5534 题意: 给你度为1 ~ n - 1节点的权值,让你构造一棵树,使其权值和最大. 思路: 一棵树上 ...
- HDU 5800 To My Girlfriend(单调DP)
[题目链接]http://acm.hdu.edu.cn/showproblem.php?pid=5800 [题目大意] 给出一个容量上限s,f[i][j][k][l][m]表示k和l两个物品不能选,i ...
- hdu 3466 Proud Merchants 01背包变形
Proud Merchants Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others) ...
- HDU 3602 2012【01 背包变形】
题意: 有 n 个团队和 m 艘船,每艘船的载客量为 k,每个团队的人数为ai+1 ,转载该团队可获利润 bi,要求每个团队的所有人必须在同一艘船上, 且团队优先级高的团队所在船编号不能大于优先级低的 ...
- HDU 2546 饭卡 01背包变形
题目大意:中文题就不多说了 题目思路:由题意可知,只要高于5元,就可以随便刷,那我们就把最贵的留在最后刷.但是如果低于5元就什么也不能刷(哪怕你要买的物品价格不足五元),所以我们可以先求出(n-5)元 ...
- HDU 2639 Bone Collector II(01背包变形【第K大最优解】)
Bone Collector II Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
随机推荐
- TOSCA自动化测试工具ppt(正在整理)
1. 认识TOSCA 安装使用 2. TOSCA自动化测试工具的优点 1). 可扩展 Tosca Commander™ functionalities can be extended by us ...
- Web前端页面的浏览器兼容性测试心得(二)搭建原汁原味的IE8测试环境
如果你做的页面被老板或PM要求兼容IE8,你就值得同情了.IE8不支持HTML5,在2017年的前端界,开发者不涉及HTML5标准简直寸步难行.然而,有一个可怕的事实客观存在,那就是IE8是Win7系 ...
- FileOutputStream写出数据实现换行和追加写入
FileOutputStream fos = fos = new FileOutputStream(Utils.getData(bizCtx,"strcat(getenv(HWORKDIR) ...
- java多态 以及静态绑定 动态绑定积累
重载,英文名是overload,是指在一个类中定义了一个以上具有相同名称的方法,这些方法的参数个数.参数类型和顺序不能相同.返回类型可以相同,也可以不同. 重写,英文名是overrid,是指在继承情况 ...
- MVC的局部视图传参的小技巧--见人才网头部导航
当我们设计一个局部视图时,当出现有类似导航的功能(如:选择左边的某个按钮跳到某个页,且顶部导航也作相印改变),如果我们选择把导航作为局部视图来处理,调用就可以做如下处理: @Html.RenderAc ...
- README.android
Default (and possibly architecture dependents) HAL modules go here. libhardware.so eventually should ...
- Java 设计模式六原则及23中常用设计模式
一.设计模式的分类 总体来说设计模式分为三大类: 创建型模式,共五种:工厂方法模式.抽象工厂模式.单例模式.建造者模式.原型模式. 结构型模式,共七种:适配器模式.装饰器模式.代理模式.外观模式.桥接 ...
- yarn命令使用
yarn 常用命令 修改日期 2017.12.26 最初接触 yarn 还是在 0.17.10 版本,由于各种各样的原因,使用时没 npm 顺手, 目前 yarn 的版本已经升级为 1.3.2 各种之 ...
- Redis windows主从服务配置
一.下载redis解压 如图: 二.复制redis.windows.conf 文件为 redis.windows_6380.conf 三.修改配置IP和端口 四.配置从属于主服务的IP 和 端口 五. ...
- LeetCode——Counting Bits
Question Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calcu ...