分布式队列Celery入门
Celery 是一个简单、灵活且可靠的,处理大量消息的分布式系统,并且提供维护这样一个系统的必需工具。它是一个专注于实时处理的任务队列,同时也支持任务调度。Celery 是语言无关的,虽然它是用 Python 实现的,但他提供了其他常见语言的接口支持。
Celery 结构
网上找到一张用得最多的图
下面针对图中的每一部分做解释:
Celery的架构由三部分组成,消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)组成。
消息中间件(broker)
一个消息传输的中间件。每当应用程序调用celery的异步任务的时候,会向broker传递消息,而后celery的worker将会取到消息,执行相应程序。也就是消费者和生产者之间的桥梁,
另外Celery 本身不提供队列服务,官方推荐使用 RabbitMQ 和 Redis 等。
连接字符串:
RabiitMQ使用amqp://localhost
Redis使用redis://localhost
任务执行结果存储(backend)
backend: 用于存储这些消息以及celery执行的一些消息和结果,以此用来确认对方是否接受了。
任务执行单元(worker)
worker: Celery类的实例,作用就是执行各种任务
Celery 安装
目前,Windows使用celery只能安装 3.1.25版,linux就可以安装4.0以上的了,这里以Windows为例。
安装
pip install celery==3.1.25
先来一个简单例子
使用官网上的例子,然后把broker的信息改好,这里我们使用redis
首先在D:\CeleryDemo新建一个文件叫task.py输入以下代码。在输入之前确保redis服务是启动的。
from celery import Celery
app = Celery('tasks', backend='redis://localhost:6379/0', broker='redis://localhost:6379/0') #配置好celery的backend和broker
@app.task #普通函数装饰为 celery task
def add(x, y):
return x + y
通过上面简单的代码broker 我们有了,backend 我们有了,task 我们也有了,现在就该运行 worker 进行工作了,在 task.py 所在目录下运行:
celery -A task worker --loglevel=info
意思就是运行 task 这个任务集合的 worker 进行工作(当然此时broker中还没有任务,worker此时相当于待命状态)
最后一步,触发任务,最简单方式就是在task.py所在目录下写一个trigger.py调用被装饰成 task 的函数:
from task import add
import time
result = add.delay(4, 4) #不要直接 add(4, 4),这里需要用 celery 提供的接口 delay 进行调用
while not result.ready():
time.sleep(1)
print ('task done: {0}'.format(result.get()))
运行之后可以看到
好了,恭喜你已经入门了。
分布式队列Celery入门的更多相关文章
- 异步分布式队列Celery
异步分布式队列Celery 转载地址 Celery 是什么? 官网 Celery 是一个由 Python 编写的简单.灵活.可靠的用来处理大量信息的分布式系统,它同时提供操作和维护分布式系统所需的工具 ...
- Celery ---- 分布式队列神器 ---- 入门
原文:http://python.jobbole.com/87238/ 参考:https://zhuanlan.zhihu.com/p/22304455 Celery 是什么? Celery 是一个由 ...
- 分布式队列Celery
Celery是什么? Celery 是一个由 Python 编写的简单.灵活.可靠的用来处理大量信息的分布式系统,它同时提供操作和维护分布式系统所需的工具. Celery 专注于实时任务处理,支持任务 ...
- 分布式队列 Celery
详情参见: 分布式队列神器 Celery 用户指南(User Guide) 1) Celery-4.1 用户指南: Application(应用) 2) Celery-4.1 用户指南: Task(任 ...
- 分布式任务队列Celery入门与进阶
一.简介 Celery是由Python开发.简单.灵活.可靠的分布式任务队列,其本质是生产者消费者模型,生产者发送任务到消息队列,消费者负责处理任务.Celery侧重于实时操作,但对调度支持也很好,其 ...
- 分布式队列celery 异步----Django框架中的使用
仅仅是个人学习的过程,发现有问题欢迎留言 一.celery 介绍 celery是一种功能完备的即插即用的任务对列 celery适用异步处理问题,比如上传邮件.上传文件.图像处理等比较耗时的事情 异步执 ...
- 分布式队列神器 Celery
Celery 是什么? Celery 是一个由 Python 编写的简单.灵活.可靠的用来处理大量信息的分布式系统,它同时提供操作和维护分布式系统所需的工具. Celery 专注于实时任务处理,支持任 ...
- Celery 分布式任务队列快速入门
Celery 分布式任务队列快速入门 本节内容 Celery介绍和基本使用 在项目中如何使用celery 启用多个workers Celery 定时任务 与django结合 通过django配置cel ...
- Celery 分布式任务队列快速入门 以及在Django中动态添加定时任务
Celery 分布式任务队列快速入门 以及在Django中动态添加定时任务 转自 金角大王 http://www.cnblogs.com/alex3714/articles/6351797.html ...
随机推荐
- Struts按着配置文件的加载的顺序,后面文件和前面文件相同的配置,后面的会把前面的文件的值覆盖
Struts按着配置文件的加载的顺序,后面文件和前面文件相同的配置,后面的会把前面的文件的值覆盖
- CF708C-Centroids
题目 一棵树的重心定义为一个点满足删除这个点后最大的连通块大小小于等于原来这颗树大小的一半. 给出一棵树,一次操作为删除一条边再添加一条边,操作结束后必须仍为一棵树.问这颗树的每个点是否可以通过一次操 ...
- BZOJ3613 HEOI2014南园满地堆轻絮
不明白在某谷上是怎么标到紫的.二分答案或者发现答案就是最大逆序差的一半. #include<iostream> #include<cstdio> #include<cma ...
- QoS专题-第1期-QoS理论篇
QoS理论篇 1 QoS的产生 随着网络技术的飞速发展,IP网络已经从当初的单一数据网络向集成数据.语音.视频.游戏的多业务网络转变.网络中所承载的数据呈几何级倍数增长,而且这些业务对网络带 ...
- 修改gcc/g++默认include路径
修改gcc/g++默认include路径 转自:http://www.network-theory.co.uk/docs/gccintro/gccintro_23.htmlhttp://ilewen. ...
- msiexec安装参数详解
原文链接地址:https://blog.csdn.net/wilson_guo/article/details/8151632 1 安装 /i表示安装,/x 表示卸载/f表示修复./l*v 表示输出详 ...
- 自动化测试常用断言的使用方法(python)
自动化测试中寻找元素并进行操作,如果在元素好找的情况下,相信大家都可以较熟练地编写用例脚本了,但光进行操作可能还不够,有时候也需要对预期结果进行判断. 这里介绍几个常用断言的使用方法,可以一定程度上帮 ...
- Hive:HQL和Mysql:SQL 的区别
HQL: group by 后面的参数一定要和select非聚集函数一致 where 1 要改成 where 1 = 1
- jsonP 后台写法 及 层级树型数据递归查询
Controller层: package com.taotao.rest.controller; import org.springframework.beans.factory.annotation ...
- Codeforces 578.C Weakness and Poorness
C. Weakness and Poorness time limit per test 2 seconds memory limit per test 256 megabytes input sta ...