POJ_1703 并查集应用
通过这题基本完整理解了并查集的构建和使用。很轻巧的一种数据结构。
本题的方法值得注意:并没有直接构建两个帮派的集合,而是构建:
关系确认集合+若干单元素集(也即未确认帮派的初始状态)并辅助一个rel数组记录和父节点的关系(0相同,1不同)。
若关系确认,则将两个树合并到一棵树上;同时凭借rel数组判断是否和父亲属于同一帮派,进而判断两个元素是否属于同一帮派。
本题的思路很清楚,但难点在于如何合并集合 和 如何更新rel数组。
此处附上某大佬的解题报告,非常清晰(同时在更新rel的方法上并不唯一,代码中注释部分给出了第二种判定方式,本质是一样的)
大佬链接:https://www.cnblogs.com/zzy19961112/p/6043420.html
ac代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
//一言以蔽之,并查集是一种越查越快的数据结构
const int maxn=;
int t,n,m,a,b;
int p[maxn];
int rel[maxn];//为0表示与父一样,否则为不一样
int find(int x){
int temp=p[x];
if(x==p[x]){
return x;
}
p[x]=find(p[x]);//搜索优化 p[x]=根。使得下次查找时只需一次查找 (开始看的时候没有深刻理解这一句的作用)
//这里存在一个递归思维,也就是说,在给rel[x]赋值之前已经确保其父节点至根节点的值均已正确。
//int temp=p[x];//bug,不能写在这里,因为此时p[x]已经不再是父节点而是根节点
//rel[x]=(rel[temp]==rel[x])?0:1; //re[x]在未更新之前表示父子关系,更新后表示和根的关系。 (事实上此时x的父亲p[x]就等于根)
rel[x] = (rel[temp] + rel[x]) % ;
return p[x];
}
void unionset(int x,int y,int px,int py){
p[px]=py;
rel[px] = (rel[y] + - rel[x]) % ;
//rel[px]=(rel[x]==rel[y])?1:0;
}
int main(void){
cin>>t;
while(t--){
cin>>n>>m;
//初始化并查集;
for(int i=;i<=n;i++) {
p[i]=i;
rel[i]=;
}
while(m--){
char op;
int a,b;
scanf("\n%c %d %d",&op,&a,&b);
int pa=find(a),pb=find(b);
if(op=='A'){
if(pa!=pb){
printf("Not sure yet.\n");
continue;
} if(rel[a]==rel[b]){
printf("In the same gang.\n");
continue;
}
printf("In different gangs.\n");//太恶心了,一开始少了个句号,wa到怀疑人生;这个bug找得我心态快崩了。。。。 还是naive
continue;
}
if(op=='D'){
if(pa!=pb)unionset(a,b,pa,pb);
}
}
}
return ;
}
POJ_1703 并查集应用的更多相关文章
- POJ_1703 Find them, Catch them 【并查集】
一.题面 POJ1703 二.分析 需要将并查集与矢量法则相结合.par数组用以记录父节点,rank用以记录与父节点的关系.如题意,有两种关系,设定0是属于同一个帮派,1表示不属于同一个帮派. 运用并 ...
- BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]
4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...
- 关押罪犯 and 食物链(并查集)
题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用"怨气值"( ...
- 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用
图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...
- bzoj1854--并查集
这题有一种神奇的并查集做法. 将每种属性作为一个点,每种装备作为一条边,则可以得到如下结论: 1.如果一个有n个点的连通块有n-1条边,则我们可以满足这个连通块的n-1个点. 2.如果一个有n个点的连 ...
- [bzoj3673][可持久化并查集 by zky] (rope(可持久化数组)+并查集=可持久化并查集)
Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0& ...
- [bzoj3123][sdoi2013森林] (树上主席树+lca+并查集启发式合并+暴力重构森林)
Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...
- 【BZOJ-3673&3674】可持久化并查集 可持久化线段树 + 并查集
3673: 可持久化并查集 by zky Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 1878 Solved: 846[Submit][Status ...
- Codeforces 731C Socks 并查集
题目:http://codeforces.com/contest/731/problem/C 思路:并查集处理出哪几堆袜子是同一颜色的,对于每堆袜子求出出现最多颜色的次数,用这堆袜子的数目减去该值即为 ...
随机推荐
- Eclipse+ADT+Android SDK 搭建安卓开发环境(版权属于forever-z)
运行环境 windows 7或者10(64位); 为例eclipse-jee-neon-3-win32-x86_64: ADT-23.0.4 下载地址 安装JDK 这里可以参考关于安装JDK的教程,请 ...
- JavaBean的任务就是: “Write once, run anywhere, reuse everywhere” Enterprise JavaBeans
javaBean_百度百科 https://baike.baidu.com/item/javaBean/529577?fr=aladdin 区别EJB JavaBean 和 Server Bean(通 ...
- webpack4学习笔记(一)
webpack4 1,安装webpack npm insatll webpack --save-dev //安装最新版本 npm insatll webpack@<version> --s ...
- 统计学习方法笔记 -- KNN
K近邻法(K-nearest neighbor,k-NN),这里只讨论基于knn的分类问题,1968年由Cover和Hart提出,属于判别模型 K近邻法不具有显式的学习过程,算法比较简单,每次分类都是 ...
- 在VMWare的虚拟机中设置共享文件夹(Linux-Ubuntu系统)
1.点击菜单中的虚拟机---设置---选项---共享文件夹,选择总是开启: 2.添加主机共享的文件夹: 3.安装vmware tools: (1)打开虚拟机---安装vmware tools: (2) ...
- nodejs基础【持续更新中】
简介 Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses an event-dr ...
- JavaScript json和字符串互转
JavaScript内置json和字符串互转的函数JSON,不需要引入外部组件 JSON.stringify(obj)将JSON转为字符串. JSON.parse(string)将字符串转为JSON格 ...
- Flask之flask-migrate
简介 flask-migrate是flask的一个扩展模块,主要是扩展数据库表结构的. 官方文档:http://flask-migrate.readthedocs.io/en/latest/ 使用fl ...
- 深入浅出地,彻彻底底地理解python中的编码
python处理文本的功能非常强大,但是如果是初学者,没有搞清楚python中的编码机制,也经常会遇到乱码或者decode error.本文的目的是简明扼要地说明python的编码机制,并给出一些建议 ...
- HBase 二次开发 java api和demo
1. 试用thrift python/java以及hbase client api.结论例如以下: 1.1 thrift的安装和公布繁琐.可能会遇到未知的错误,且hbase.thrift的版本 ...