转自: http://lutaf.com/210.htm

Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序

TF:词频,IDF:逆向文档频率,TF-IDF是一种统计方法,或者被称为向量空间模型,名字听起来很复杂,但是它其实只包含了两个简单规则

  1. 某个词或短语在一篇文章中出现的次数越多,越相关
  2. 整个文档集合中包含某个词的文档数量越少,这个词越重要

所以一个term的TF-IDF相关性等于 TF * IDF

这两个规则非常简单,这就是TF-IDF的核心规则,第二个的规则其实有缺陷的,他单纯地认为文本频率小的单词就越重要,文本频率大的单词就越无用,显然这并不是完全正确的。并不能有效地反映单词的重要程度和特征词的分布情况,比如说搜索web文档的时候,处于HTML不同结构的特征词中对文章内容的反映程度不同,应该有不同的权重

TF-IDF的优点是算法简单,运算速度很快

Lucene为了提高可编程行,在上述规则做了一些扩充,就是加入一些编程接口,对不同的查询做了权重归一化处理,但是核心公式还是TF * IDF

Lucene算法公式如下

score(q,d) = coord(q,d) · queryNorm(q) · ∑ ( tf(t in d) · idf(t)2 · t.getBoost() · norm(t,d) )

  • tf(t in d ), = frequency½
  • idf(t) = 1 +log(文档总数/(包含t的文档数+1))
  • coord(q,d) 评分因子,。越多的查询项在一个文档中,说明些文档的匹配程序越高,比如说,查询"A B C",那么同时包含A/B/C3个词的文档 是3分,只包含A/B的文档是2分,coord可以在query中关掉的
  • queryNorm(q)查询的标准查询,使不同查询之间可以比较
  • t.getBoost() 和 norm(t,d) 都是提供的可编程接口,可以调整 field/文档/query项 的权重

各种编程插口显得很麻烦,可以不使用,所以我们可以把Lucence的算分公式进行简化

score(q,d) = coord(q,d) · ∑ ( tf(t in d) · idf(t)2 )

结论
  1. TF-IDF 算法是以 term为基础的,term就是最小的分词单元,这说明分词算法对基于统计的ranking无比重要,如果你对中文用单字切分,那么就会损失所有的语义相关性,这个时候 搜索只是当做一种高效的全文匹配方法
  2. 按照规则1 某个词或短语在一篇文章中出现的次数越多,越相关 一定要去除掉stop word,因为这些词出现的频率太高了,也就是TF的值很大,会严重干扰算分结果
  3. TF和IDF在生成索引的时候,就会计算出来: TF会和DocID保存在一起(docIDs的一部分),而IDF= 总文档数 / 当前term拥有的docIDs 长度

Lucene TF-IDF 相关性算分公式的更多相关文章

  1. Lucene TF-IDF 相关性算分公式(转)

    Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序 TF:词频,IDF:逆向文档频率,TF-IDF是一种统计方法,或者被称为向量空间模型,名字听起来很 ...

  2. Solr相似度算法一:Lucene TF-IDF 相关性算分公式

    Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序 TF:词频,IDF:逆向文档频率,TF-IDF是一种统计方法,或者被称为向量空间模型,名字听起来很 ...

  3. ElasticStack学习(九):深入ElasticSearch搜索之词项、全文本、结构化搜索及相关性算分

    一.基于词项与全文的搜索 1.词项 Term(词项)是表达语意的最小单位,搜索和利用统计语言模型进行自然语言处理都需要处理Term. Term的使用说明: 1)Term Level Query:Ter ...

  4. 关于使用Filter降低Lucene tf idf打分计算的调研

    将query改成filter,lucene中有个QueryWrapperFilter性能比较差,所以基本上都须要自己写filter.包含TermFilter,ExactPhraseFilter,Con ...

  5. Elasticsearch从入门到放弃:浅谈算分

    今天来聊一个 Elasticsearch 的另一个关键概念--相关性算分.在查询 API 的结果中,我们经常会看到 _score 这个字段,它就是用来表示相关性算分的字段,而相关性就是描述一个文档和查 ...

  6. 影响ES相关度算分的因素

    相关性算分 指文档与查询语句间的相关度,通过倒排索引可以获取与查询语句相匹配的文档列表   如何将最符合用户查询需求的文档放到前列呢? 本质问题是一个排序的问题,排序的依据是相关性算分,确定倒排索引哪 ...

  7. tf idf公式及sklearn中TfidfVectorizer

    在文本挖掘预处理之向量化与Hash Trick中我们讲到在文本挖掘的预处理中,向量化之后一般都伴随着TF-IDF的处理,那么什么是TF-IDF,为什么一般我们要加这一步预处理呢?这里就对TF-IDF的 ...

  8. TF/IDF(term frequency/inverse document frequency)

    TF/IDF(term frequency/inverse document frequency) 的概念被公认为信息检索中最重要的发明. 一. TF/IDF描述单个term与特定document的相 ...

  9. 基于TF/IDF的聚类算法原理

        一.TF/IDF描述单个term与特定document的相关性TF(Term Frequency): 表示一个term与某个document的相关性. 公式为这个term在document中出 ...

随机推荐

  1. iOS如何让主界面不显示NavigationBar

    这个问题曾经困扰过我.现在我给出正解.- (void)viewWillAppear:(BOOL)animated {    [super viewWillAppear:animated]; [self ...

  2. Java中“==和equals”的区别

    (1)“==” 是判断地址的: (2)至于equals,String类型重写了 equals()方法,判断内容是否相等,因此 equals 是相等的:

  3. OSGI框架—HelloWorld小实例

    OSGi(Open Service Gateway Initiative)技术是Java动态化模块化系统的一系列规范.OSGi一方面指维护OSGi规范的OSGI官方联盟,另一方面指的是该组织维护的基于 ...

  4. 使用 Apache Commons CLI 解析命令行参数示例

    很好的输入参数解析方法 ,转载记录下 转载在: https://www.cnblogs.com/onmyway20xx/p/7346709.html Apache Commons CLI 简介 Apa ...

  5. Yii框架2.0的Gii

    Yii框架的Gii在我看来算是个快速创建器,当然对于学习来说意义不大,但对于已经懂得他的原理并用他开发的话,就是个快速开发的好工具. 他能快速的创建控制器,模块,crup,插件,Module. 打开g ...

  6. 菜鸟也能学cocos2dx3.0 浅析刀塔传奇(下)

    首先我们讲点话外的东西,异步载入:众所周知,loading里面一般都是载入数据的,那么是怎么载入的呢? Director::getInstance()->getTextureCache()-&g ...

  7. C#建WindowForm调用R可视化

    众所周知R软件功能非常强大,可以很好的进行各类统计,并能输出图形.下面介绍一种R语言和C#进行通信的方法,并将R绘图结果显示到WinForm UI界面上的方法,文中介绍的很详细,需要的朋友可以参考下. ...

  8. MongoDB简单CRUD场景

    MongoDB简单CRUD命令操作 (1)新建数据库:use 数据库名 (2)显示所有数据库:show dbs; (3)新建集合(两种方式)  隐式创建:在创建集合的同时往集合里面添加数据---db. ...

  9. Windows常见宏的使用

    WIN32_LEAN_AND_MEAN 1.  参考资料:https://msdn.microsoft.com/en-us/library/windows/desktop/aa383745(v=vs. ...

  10. 无线路由MAC地址过滤安全可靠性讨论

    无线路由MAC地址过滤安全可靠性讨论/如何实现,真的有效吗,如何防范       [内容导航] 什么是MAC地址过滤 突破MAC地址过滤步骤 捕获的无线客户端MAC地址 更改MAC地址来伪造身份 在W ...