Tree
Time Limit: 5000MS   Memory Limit: 131072K
Total Submissions: 2825   Accepted: 769

Description

You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edges are numbered 1 through N − 1. Each edge is associated with a weight. Then you are to execute a series of instructions on the tree. The instructions can be one of the following forms:

CHANGE i v Change the weight of the ith edge to v
NEGATE a b Negate the weight of every edge on the path from a to b
QUERY a b Find the maximum weight of edges on the path from a to b

Input

The input contains multiple test cases. The first line of input contains an integer t (t ≤ 20), the number of test cases. Then follow the test cases.

Each test case is preceded by an empty line. The first nonempty line of its contains N (N ≤ 10,000). The next N − 1 lines each contains three integers ab and c, describing an edge connecting nodes a and b with weight c. The edges are numbered in the order they appear in the input. Below them are the instructions, each sticking to the specification above. A lines with the word “DONE” ends the test case.

Output

For each “QUERY” instruction, output the result on a separate line.

Sample Input

1

3
1 2 1
2 3 2
QUERY 1 2
CHANGE 1 3
QUERY 1 2
DONE

Sample Output

1
3

Source

树链剖分+线段树实现

 /* ***********************************************
Author :kuangbin
Created Time :2013/8/17 4:04:42
File Name :F:\2013ACM练习\专题学习\数链剖分\POJ3237Tree.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std; const int MAXN = ;
struct Edge
{
int to,next;
}edge[MAXN*];
int head[MAXN],tot;
int top[MAXN];//top[v]表示v所在的重链的顶端节点
int fa[MAXN]; //父亲节点
int deep[MAXN];//深度
int num[MAXN];//num[v]表示以v为根的子树的节点数
int p[MAXN];//p[v]表示v与其父亲节点的连边在线段树中的位置
int fp[MAXN];//和p数组相反
int son[MAXN];//重儿子
int pos;
void init()
{
tot = ;
memset(head,-,sizeof(head));
pos = ;
memset(son,-,sizeof(son));
}
void addedge(int u,int v)
{
edge[tot].to = v;edge[tot].next = head[u];head[u] = tot++;
}
void dfs1(int u,int pre,int d) //第一遍dfs求出fa,deep,num,son
{
deep[u] = d;
fa[u] = pre;
num[u] = ;
for(int i = head[u];i != -; i = edge[i].next)
{
int v = edge[i].to;
if(v != pre)
{
dfs1(v,u,d+);
num[u] += num[v];
if(son[u] == - || num[v] > num[son[u]])
son[u] = v;
}
}
}
void getpos(int u,int sp) //第二遍dfs求出top和p
{
top[u] = sp;
p[u] = pos++;
fp[p[u]] = u;
if(son[u] == -) return;
getpos(son[u],sp);
for(int i = head[u] ; i != -; i = edge[i].next)
{
int v = edge[i].to;
if(v != son[u] && v != fa[u])
getpos(v,v);
}
} //线段树
struct Node
{
int l,r;
int Max;
int Min;
int ne;
}segTree[MAXN*];
void build(int i,int l,int r)
{
segTree[i].l = l;
segTree[i].r = r;
segTree[i].Max = ;
segTree[i].Min = ;
segTree[i].ne = ;
if(l == r)return;
int mid = (l+r)/;
build(i<<,l,mid);
build((i<<)|,mid+,r);
}
void push_up(int i)
{
segTree[i].Max = max(segTree[i<<].Max,segTree[(i<<)|].Max);
segTree[i].Min = min(segTree[i<<].Min,segTree[(i<<)|].Min);
}
void push_down(int i)
{
if(segTree[i].l == segTree[i].r)return;
if(segTree[i].ne)
{
segTree[i<<].Max = -segTree[i<<].Max;
segTree[i<<].Min = -segTree[i<<].Min;
swap(segTree[i<<].Min,segTree[i<<].Max);
segTree[(i<<)|].Max = -segTree[(i<<)|].Max;
segTree[(i<<)|].Min = -segTree[(i<<)|].Min;
swap(segTree[(i<<)|].Max,segTree[(i<<)|].Min);
segTree[i<<].ne ^= ;
segTree[(i<<)|].ne ^= ;
segTree[i].ne = ;
}
}
void update(int i,int k,int val) // 更新线段树的第k个值为val
{
if(segTree[i].l == k && segTree[i].r == k)
{
segTree[i].Max = val;
segTree[i].Min = val;
segTree[i].ne = ;
return;
}
push_down(i);
int mid = (segTree[i].l + segTree[i].r)/;
if(k <= mid)update(i<<,k,val);
else update((i<<)|,k,val);
push_up(i);
}
void ne_update(int i,int l,int r) // 更新线段树的区间[l,r]取反
{
if(segTree[i].l == l && segTree[i].r == r)
{
segTree[i].Max = -segTree[i].Max;
segTree[i].Min = -segTree[i].Min;
swap(segTree[i].Max,segTree[i].Min);
segTree[i].ne ^= ;
return;
}
push_down(i);
int mid = (segTree[i].l + segTree[i].r)/;
if(r <= mid)ne_update(i<<,l,r);
else if(l > mid) ne_update((i<<)|,l,r);
else
{
ne_update(i<<,l,mid);
ne_update((i<<)|,mid+,r);
}
push_up(i);
}
int query(int i,int l,int r) //查询线段树中[l,r] 的最大值
{
if(segTree[i].l == l && segTree[i].r == r)
return segTree[i].Max;
push_down(i);
int mid = (segTree[i].l + segTree[i].r)/;
if(r <= mid)return query(i<<,l,r);
else if(l > mid)return query((i<<)|,l,r);
else return max(query(i<<,l,mid),query((i<<)|,mid+,r));
push_up(i);
}
int findmax(int u,int v)//查询u->v边的最大值
{
int f1 = top[u], f2 = top[v];
int tmp = -;
while(f1 != f2)
{
if(deep[f1] < deep[f2])
{
swap(f1,f2);
swap(u,v);
}
tmp = max(tmp,query(,p[f1],p[u]));
u = fa[f1]; f1 = top[u];
}
if(u == v)return tmp;
if(deep[u] > deep[v]) swap(u,v);
return max(tmp,query(,p[son[u]],p[v]));
}
void Negate(int u,int v)//把u-v路径上的边的值都设置为val
{
int f1 = top[u], f2 = top[v];
while(f1 != f2)
{
if(deep[f1] < deep[f2])
{
swap(f1,f2);
swap(u,v);
}
ne_update(,p[f1],p[u]);
u = fa[f1]; f1 = top[u];
}
if(u == v)return;
if(deep[u] > deep[v]) swap(u,v);
return ne_update(,p[son[u]],p[v]);
}
int e[MAXN][];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int T;
int n;
scanf("%d",&T);
while(T--)
{
init();
scanf("%d",&n);
for(int i = ;i < n-;i++)
{
scanf("%d%d%d",&e[i][],&e[i][],&e[i][]);
addedge(e[i][],e[i][]);
addedge(e[i][],e[i][]);
}
dfs1(,,);
getpos(,);
build(,,pos-);
for(int i = ;i < n-; i++)
{
if(deep[e[i][]] > deep[e[i][]])
swap(e[i][],e[i][]);
update(,p[e[i][]],e[i][]);
}
char op[];
int u,v;
while(scanf("%s",op) == )
{
if(op[] == 'D')break;
scanf("%d%d",&u,&v);
if(op[] == 'Q')
printf("%d\n",findmax(u,v));//查询u->v路径上边权的最大值
else if(op[] == 'C')
update(,p[e[u-][]],v);//改变第u条边的值为v
else Negate(u,v);
}
}
return ;
}

POJ 3237 Tree (树链剖分)的更多相关文章

  1. poj 3237 Tree 树链剖分

    题目链接:http://poj.org/problem?id=3237 You are given a tree with N nodes. The tree’s nodes are numbered ...

  2. POJ 3237 Tree (树链剖分 路径剖分 线段树的lazy标记)

    题目链接:http://poj.org/problem?id=3237 一棵有边权的树,有3种操作. 树链剖分+线段树lazy标记.lazy为0表示没更新区间或者区间更新了2的倍数次,1表示为更新,每 ...

  3. POJ 3237.Tree -树链剖分(边权)(边值更新、路径边权最值、区间标记)贴个板子备忘

    Tree Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 12247   Accepted: 3151 Descriptio ...

  4. poj 3237 Tree 树链剖分+线段树

    Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...

  5. poj 3237 Tree(树链拆分)

    题目链接:poj 3237 Tree 题目大意:给定一棵树,三种操作: CHANGE i v:将i节点权值变为v NEGATE a b:将ab路径上全部节点的权值变为相反数 QUERY a b:查询a ...

  6. POJ3237 Tree 树链剖分 边权

    POJ3237 Tree 树链剖分 边权 传送门:http://poj.org/problem?id=3237 题意: n个点的,n-1条边 修改单边边权 将a->b的边权取反 查询a-> ...

  7. Hdu 5274 Dylans loves tree (树链剖分模板)

    Hdu 5274 Dylans loves tree (树链剖分模板) 题目传送门 #include <queue> #include <cmath> #include < ...

  8. Query on a tree——树链剖分整理

    树链剖分整理 树链剖分就是把树拆成一系列链,然后用数据结构对链进行维护. 通常的剖分方法是轻重链剖分,所谓轻重链就是对于节点u的所有子结点v,size[v]最大的v与u的边是重边,其它边是轻边,其中s ...

  9. 【BZOJ-4353】Play with tree 树链剖分

    4353: Play with tree Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 31  Solved: 19[Submit][Status][ ...

  10. SPOJ Query on a tree 树链剖分 水题

    You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, ...

随机推荐

  1. 使用navicat for sqlserver 把excel中的数据导入到sqlserver数据库

    以前记得使用excel向mysql中导入过数据,今天使用excel向sqlserver2005导入了数据,在此把做法记录一下 第一步:准备excel数据,在这个excel中有3个sheet,每个she ...

  2. Django Authentication 用户认证系统

    一. Django的认证系统 Django自带一个用户认证系统,用于处理用户账户.群组.许可和基于cookie的用户会话. 1.1 概览 Django的认证系统包含了身份验证和权限管理两部分.简单地说 ...

  3. C++——map注意事项

    1. C++标准模块库STL中提供了两种基本的关联容器:set和map.其内部实现是都是采用红黑树,但不同的是,set中结点存储的是键值,map中结点存储的是<key,value>的键值对 ...

  4. 窗口生效函数UpdateData

    Invalidate()使整个窗口客户区无效.窗口的客户区无效意味着需要重绘,例如,如果一个被其它窗口遮住的窗口变成了前台窗口,那么原来被遮住的部分就是无效的,需要重绘.这时Windows会在应用程序 ...

  5. Denoise Autoencoder简单理解

    自编码器通过学习隐含特征来表达原始数据,那什么是denoise autoencoder呢? 关于Autoencoder参考:http://blog.csdn.net/on2way/article/de ...

  6. hdu 5920(模拟)

    Ugly Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

  7. 洛谷P2692 覆盖 题解

    题目传送门 这道题一开始想使用二维的bool型数组来存,最后统计.但看到数据范围... 所以就改用两个bool型数组(一维),分别储存横.列,最后将横.列面积求出来,再减去重复算的面积(横的个数*列的 ...

  8. EOJ 3262 黑心啤酒厂

    最大公约数. 计算$x$与$i$的最小公倍数,就是这些人至少需要喝几杯,最小公倍数除以$x$就是要买几瓶. #include <cstdio> #include <cmath> ...

  9. Unity全面优化

    前言 Unity的项目优化已经是老生常谈,很多人在项目完成之后,即便创意新颖,也会觉得差强人意,原因就在于没有做详细的项目优化.众所周知,Unity是一个综合性的3D开发引擎,其中包含图像渲染,逻辑处 ...

  10. python语言特性总结

    一直想学习python,虽然编程写了不少,但有时仍不得要领.这篇blog主要是记录python的一些主要特性. 前言 python学习总结,包括python的一些基本语法,高级特性,函数式编程,面向对 ...