Maze

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)

Total Submission(s): 1419    Accepted Submission(s): 511

Special Judge

Problem Description
When wake up, lxhgww find himself in a huge maze.



The maze consisted by N rooms and tunnels connecting these rooms. Each pair of rooms is connected by one and only one path. Initially, lxhgww is in room 1. Each room has a dangerous trap. When lxhgww step into a room, he has a possibility to be killed and restart
from room 1. Every room also has a hidden exit. Each time lxhgww comes to a room, he has chance to find the exit and escape from this maze.



Unfortunately, lxhgww has no idea about the structure of the whole maze. Therefore, he just chooses a tunnel randomly each time. When he is in a room, he has the same possibility to choose any tunnel connecting that room (including the tunnel he used to come
to that room).

What is the expect number of tunnels he go through before he find the exit?
 
Input
First line is an integer T (T ≤ 30), the number of test cases.



At the beginning of each case is an integer N (2 ≤ N ≤ 10000), indicates the number of rooms in this case.



Then N-1 pairs of integers X, Y (1 ≤ X, Y ≤ N, X ≠ Y) are given, indicate there is a tunnel between room X and room Y.



Finally, N pairs of integers Ki and Ei (0 ≤ Ki, Ei ≤ 100, Ki + Ei ≤ 100, K1 = E1 = 0) are given, indicate the percent of the possibility of been killed and exit in the ith room.
 
Output
For each test case, output one line “Case k: ”. k is the case id, then the expect number of tunnels lxhgww go through before he exit. The answer with relative error less than 0.0001 will get accepted. If it is not possible to escape from the maze, output “impossible”.
 
Sample Input
3
3
1 2
1 3
0 0
100 0
0 100
3
1 2
2 3
0 0
100 0
0 100
6
1 2
2 3
1 4
4 5
4 6
0 0
20 30
40 30
50 50
70 10
20 60
 
Sample Output
Case 1: 2.000000
Case 2: impossible
Case 3: 2.895522

有一颗树n个结点n-1条边,根结点为1

对于在点i下一步有3种情况:

1:被杀死回到点1 --- 概率为ki

2:找到出口退出----慨率为ei

3:沿着边进入下一个点

求从点1開始到退出的平均须要走的边数

/*分析:
对于点i:
1,点i是叶子结点,则:
E(i)=ki*E(1)+ei*0+(1-ki-ei)*(E(father)+1)
=>E(i)=ki*E(1)+(1-ki-ei)*E(father)+(1-ki-ei)
2,点i非叶子结点,则:
E(i)=ki*E(1)+ei*0+(1-ki-ei)/m *(E(father)+1)+(1-ki-ei)/m*SUM(E(child)+1)
=>E(i)=ki*E(1)+(1-ki-ei)/m *E(father)+(1-ki-ei)/m*SUM(E(child))+(1-ki-ei);//作为1式 从公式可知求E(i)须要求到E(father),E(child)
但这是非常难求到的,由于即使是叶子结点也须要知道E(1),可是E(1)是未知的须要求的 如果:E(i)=Ai*E(1)+Bi*E(father)+Ci;//作为2式 所以:E(child)=Aj*E(1)+Bj*E(i)+Cj;
=>SUM(E(child))=SUm(Aj*E(1)+Bj*E(i)+Cj);
带入1式
=>E(i)=ki*E(1)+(1-ki-ei)/m *E(father)+(1-ki-ei)/m*SUm(Aj*E(1)+Bj*E(i)+Cj)+(1-ki-ei);
=>(1-(1-ki-ei)/m*SUM(Bj))*E(i)=(ki+(1-ki-ei)/m*SUM(Aj))*E(1)+(1-ki-ei)/m *E(father)+(1-ki-ei+(1-ki-ei)/m*SUM(cj));
与上述2式对照得到:
Ai=(ki+(1-ki-ei)/m*SUM(Aj)) / (1-(1-ki-ei)/m*SUM(Bj))
Bi=(1-ki-ei)/m / (1-(1-ki-ei)/m*SUM(Bj))
Ci=(1-ki-ei+(1-ki-ei)/m*SUM(cj)) / (1-(1-ki-ei)/m*SUM(Bj))
所以Ai,Bi,Ci仅仅与i的孩子Aj,Bj,Cj和本身ki,ei有关
于是能够从叶子開始逆推得到A1,B1,C1
在叶子节点:
Ai=ki;
Bi=(1-ki-ei);
Ci=(1-ki-ei);
而E(1)=A1*E(1)+B1*0+C1;
=>E(1)=C1/(1-A1);
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std; const int MAX=10000+10;
const double eps=1e-9;
int n,size;
int head[MAX];
double A,B,C,k[MAX],e[MAX]; struct Edge{
int v,next;
Edge(){}
Edge(int V,int NEXT):v(V),next(NEXT){}
}edge[MAX*2]; void Init(){
memset(head,-1,sizeof head);
size=0;
} void InsertEdge(int u,int v){
edge[size]=Edge(v,head[u]);
head[u]=size++;
} void dfs(int u,int father){
double a=0,b=0,c=0,p;
int m=0;
for(int i=head[u]; i != -1;i=edge[i].next){
int v=edge[i].v;
if(v == father)continue;
dfs(v,u);
a+=A;
b+=B;
c+=C;
++m;
}
if(father != -1)++m;
p=(1-k[u]-e[u])/m;
A=(k[u]+p*a)/(1-p*b);
B=p/(1-p*b);
C=(1-k[u]-e[u]+p*c)/(1-p*b);
} int main(){
int t,u,v,num=0;
scanf("%d",&t);
while(t--){
scanf( "%d",&n);
Init();
for(int i=1;i<n;++i){
scanf("%d%d",&u,&v);
InsertEdge(u,v);
InsertEdge(v,u);
}
for(int i=1;i<=n;++i){
scanf("%lf%lf",&k[i],&e[i]);
k[i]/=100;
e[i]/=100;
}
dfs(1,-1);
if(fabs(A-1)<eps)printf("Case %d: impossible\n",++num);
else printf("Case %d: %.6f\n",++num,C/(1-A));
}
return 0;
}

hdu4035之经典慨率DP的更多相关文章

  1. ZOJ3640之简单慨率DP

    Help Me Escape Time Limit: 2 Seconds      Memory Limit: 32768 KB Background     If thou doest well, ...

  2. Uva 10891 经典博弈区间DP

    经典博弈区间DP 题目链接:https://uva.onlinejudge.org/external/108/p10891.pdf 题意: 给定n个数字,A和B可以从这串数字的两端任意选数字,一次只能 ...

  3. poj3311 TSP经典状压dp(Traveling Saleman Problem)

    题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...

  4. NYOJ90 整数划分(经典递归和dp)

    整数划分 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 将正整数n表示成一系列正整数之和:n=n1+n2+…+nk,  其中n1≥n2≥…≥nk≥1,k≥1.  正 ...

  5. hoj 2662 经典状压dp // MyFirst 状压dp

    题目链接:http://acm.hit.edu.cn/hoj/problem/view?id=2662 1.引言:用dp解决一个问题的时候很重要的一环就是状态的表示,一般来说,一个数组即可保存状态. ...

  6. POJ 1185 经典状压dp

    做了很久的题 有注释 #include<stdio.h> #include<string.h> #include<algorithm> #include<ma ...

  7. hdu3534,个人认为很经典的树形dp

    题目大意为,求一个树的直径(最长路),以及直径的数量 朴素的dp只能找出某点开始的最长路径,但这个最长路径却不一定是树的直径,本弱先开始就想简单了,一直wa 直到我看了某位大牛的题解... 按照那位大 ...

  8. poj 2342 Anniversary party_经典树状dp

    题意:Ural大学有n个职员,1~N编号,他们有从属关系,就是说他们关系就像一棵树,父节点就是子节点的直接上司,每个职员有一个快乐指数,现在要开会,职员和职员的直接上司不能同时开会,问怎才能使开会的快 ...

  9. CF 319C(Kalila and Dimna in the Logging Industry-斜率DP,注意叉积LL溢出)

    C. Kalila and Dimna in the Logging Industry time limit per test 2 seconds memory limit per test 256 ...

随机推荐

  1. ubuntu上安装MySQL详解

     1. 安装 在终端输入 sudo apt-get install mysql-server mysql-client 回车 2.安装完成后检测MySQL的状态 systemctl status my ...

  2. MySQL JDBC驱动下载

    下载地址:https://pan.baidu.com/s/1VLNaV_rz2P1jMtYrjJydiQ

  3. java基础9 main函数、this、static、super、final、instanceof 关键字

    一.main函数详解 1.public:公共的.权限是最大的,在任何情况都可以访问  原因:为了保证jvm在任何情况下都可以访问到main法2.static:静态,静态可以让jvm调用更方便,不需要用 ...

  4. 数据库连接池(c3p0与druid)

    1.数据库连接池概念 其实就是一个容器(集合),存放数据库连接的容器.当系统初始化好后,容器被创建,容器中会申请一些连接对象,当用户来访问数据库时,从容器中获取连接对象,用户访问完之后,会将连接对象归 ...

  5. Hadoop(六)MapReduce的入门与运行原理

    一 MapReduce入门 1.1 MapReduce定义 Mapreduce是一个分布式运算程序的编程框架,是用户开发“基于hadoop的数据分析应用”的核心框架: Mapreduce核心功能是将用 ...

  6. char *总结

    #include <iostream> using namespace std; int main() { char *p[] = {"one","two&q ...

  7. 一道关于数据库(经典父子级 ID 关联)更新题,大家帮忙想想还有其它解决思路没有?

    昨天,一同事发过来的一道数据库题目,就是哪种经典的父子级 ID 在同一数据库表中设计类型.需要在原表中添加一个字段,同时,将该节点的父子级详细信息插入到原表新增的一字段中,具体效果如下图. AreaC ...

  8. (13) go map

    1.定义 map 无序, key唯一 (1) (2) (3)定义+赋值 2. map的值时map, 记得要make 3.增删改查 (1)增 改 (2)删除 (3)查 4.遍历 值map 嵌套for, ...

  9. python解析Nginx访问日志

    环境说明 python3+ pip install geoip2==2.9.0 nginx日志配置成json格式,配置如下: log_format json_log '{ "time&quo ...

  10. Wordpress,你好!

    [caption id="" align="alignleft" width="1024"] 耳机[/caption] 想了想,还是没有删掉 ...