Flower Dance

Time Limit: 20 Sec  Memory Limit: 256 MB

题目连接

http://162.105.80.126/contest/%E3%80%90%E5%BC%B1%E7%9C%81%E8%83%A1%E7%AD%96%E3%80%91Round%20%230/Flower%20Dance

Description

萌萌哒的TKD正在打代码,耳边放着Flower Dance,手指轻快地在键盘上舞动。
听着这美妙的旋律,TKD不禁想起了什么。
第一次遇到Po姐姐的时候,就一起欣赏了美丽的花舞吧。
两个人自由地在花海中徜徉...徜徉......
那真的是段美妙的回忆呢~

欣赏花舞之后,腹黑的Po姐姐和TKD聊了起来。
‘TKD啊,你还记得我们是怎么走过花海的吗?’
‘唔...貌似记得不是太清楚了>v<’
‘我刚才观察了一下,其实花海中能走的路,就是一个n*m的网格图’
‘哦?是吗OwO’
‘然后呢,有一些节点被调皮的小妖精堵住了,是不能走的’
‘嗯是的,好可爱的妖精呢>_<’
‘即便如此我们还是都走了最短的路径呢~’
‘嗯嗯!~’
‘而且我还刻意走了一条和你走的路不相交的路哦~’
‘姐姐真是厉害呀,连我走的路是什么都知道~~~’
‘当然啊,姐姐可比你厉害多了。现在我考考你,我们从左上角走到右下角,只能向右或者向下走,有多少总走法呢?’
‘啊——?’
萌萌哒的TKD完全没有想到Po姐姐会如此腹黑。
你能帮TKD解答腹黑姐姐的问题吗~

Input

第一行两个正整数n和m,代表花海的大小
接下来n行每行一个长度为m的01串,描述花海中的每一个点
其中0代表可以走,1代表这个点被小妖精封住辣~
数据保证花海的左上角和右下角没有小妖精

Output

一行一个整数,代表Po姐姐和TKD从左上角走到右下角的方案数
答案对1000000007(109+7)取模
注意:对于两条不相交的路径A和B,如果Po姐姐走了A,TKD走了B,和Po姐姐走了B,TKD走了A我们视为同一种方案

Sample Input

4 4
0001
0100
0000
0000

Sample Output

5

HINT

  • 对于20%的数据,
  • 对于40%的数据,
  • 对于另外10%的数据,花海中不存在小妖精
  • 对于100%的数据,

五种方案如下图所示:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAWwAAAFsCAIAAABn/RTuAAAABGdBTUEAALGPC/xhBQAAidpJREFUeF7tvQd4G9mV56t9O+95Z9634x1718/vzex7Xq/zeMdhnNpup+62u93B6pZaiaIYJeYcwZwJEsw555xzzgkkQJAgQAAECSYQIMAEgjkD9U6hZLZaEkWQIilSfeu7X7FQLBQKB/f+6n/OPffWf8jgKa994RftQu9DG2Tcdv/C2+MzAyDLvKAyIOM8Ng5ABJVrnp6HBVnjSQsgy7ygPiDjEMa5htoMbgUEkSPuJcgyJ4IIjSvo44wxuONM/hRzdHpodIo7PjMyKeYQa4FweGwaNrgTorFJ8bhQOilamJxdmBQvCCVLU/h6UShZEM/LJIty8fwybIjmlmDPgnwjJ68wNpo0PrMkW9+ek63OLiwT/5qeXZyRLsB7YQPWcM7BkcmOAW7bALe5n1PWRu8c4DXR2OkVbdEFDfZhOQY+CfccwzRI4RrOkfddzqAgiDxWYaipHNVUkGVOBBHABFswBaRgj80AOLiCGd6EaHRaAmV8WiKYlgzDAaNTsMGfEE3PLizKV5dW1heWcSgQXABwSJdWYHt+eXVBtjInW4E9swsrWfnVO7LswkzSIJN/oMQW8XetAWsIlBBvnF2QzUhlE0IpfG4ve6yPPcYdF/exBYMjE0C35l5Wbl2Pd2LJA9foOw6h90kRGk4RGi/NkedDBLt2DRVkAWSBZy3wFFCeJaxAKAVq4IyYmgVYEDJkZBLfA1pDPLfEHZsG0IAMUbX5ZSCIfH1rUb42L1tdXNkgOAJCY162AgX+u7SK71yQb6akpWxIs3dkRTXF9nUNbUoMg/+ubu4QqkSyhOMGNuC0IGFGZyTMkanR6VkgF39SPDQ2xRUIe1ijpa20zOrOsNxafY9YbbeYBy5RGn9Dyalp8hyIoKqDLIAs8AILvDhgBN4E8GJiZg4KtF7epHh0ahZ2wkvQC9IlOfyXNTYNrgc0fgAEAREcFivry2ubQBPpgnxBvkbshyLDj9mYW9pOijZfmy+Yn8pYFmf1NnsHBZGBIxs7+8vrWyBJoKgUDcBoBXTN3NIKeEZjU/iVgDaZk21w+FP9vKn6HmZVOyO3rjMovVLTNQogouMWreEUeR8kyee9G/WZ8jREUO1BFkAWONYChxx5VokQvIA1YGJM5b+MCyXzuN+xDNRQRTpkk+L5iZn5+aVV+RpgYhMaP5ACNAVABDZWNnZgDfhY39ze2NoBRhxgWEQ4eX+lcGkme2kmRzSaPM5KGOzyMze6OS2S7WEYHK9iDU4iKMCRRTkAZR0iKQvLmzt7GDkkoLiyfnJ2kTEyVU8dLG1jROXVesYX2oZk2EbkaLlG4xBxirjvAiiBdSROECfVWo2CIIIcN2SBE1vgBRCZEs8TMU5CjECRLK7MSPGABRG/IFyVhaXV5dXNlY1tYMf65s7axtbm9u7G1u7h9ur61tbWztY2/Hcbw7CUlPhlUQYQZFGYPcVNZFEjehvJzK4gb+cbhSVVcIB8YxvKxs7B3gG2u4ftbGFy2XZLQ2d8fvx1w3cLyktXt5T8acnkjJQ1LmzoHUqrbPdLKfVJLtX3SgCIPHDB9QhwRNMl6p5TOA4UcHNccKyoOEKsifLkNr4HQeTEFejY2xQ64LW3wAshAl0ki8CL2QX5nGwNfAqIUMBLKES4dEG+vgqtfXuPoAbgY3tnb2t7d/9Asbe/v7d3QLwkCmzvQxBVtVTmWu3MF6wKs0XshOGOkP4mck+tD73FvyzDPDzEmziI2sWIyY+2jzPTCbmlGffhDfKfNN0+TSlJSc5Lzc+v4PPnF5Z3RNJljmCmrmcoIq8+KKOSFJNn5Juq4RJzlxSp5Rqr7Rqj4x6r6RyJh0ugqOTJ39gBHTq41wNwIQqhXBBEEESQBU5sgRdARDy/JJqDGMTq8vomdKDABrwkwqWwhpewc3FlbX0TALG7q0IGrPGCY0QBZX9foWIKgQ5slCOoqq8saS5KrPLI74tK7QnNYkSn9IYnt1LSmgKz6wOyS1wLc6zDPR69Z/pH3awb5jX6/gNOIYOuAb3Ogb2kALqTN9XGq8fSrcdMM+YjC1/zocEJiWydzp3IqeuJLWwMy6l1TSgyC0h1iSu2Ds7ScovV8UjQ84jX84x/4Bqj6Rqj4RylYgeso++7QIm6D9ETZ3wNO5+jRMA6r/1tBH1BZIGXtMALIAL9shABkS5Bxy1EN7Zla1sgSVSqZBWEydLK5sbO3srGFoRUt7dxiAA5ABigN3Z29/f3lbAQ7OAM8RLyYgIKPdKHo5rXS5rXSlrWKppXypvk5bBuWa2A0rxa0bRa3rJZ2bJZUyXKzm5L6q4LEA/F5RXaG8Vq+PY6BvY6+XXa++LFwa/LgUx1JA843KX8JTExd1yy2tLPjS9pTSxrjyls8kmt8koqC8+ttQ3N1vJI1PFO0vNKeuiVpOOV+MA99r5LDOADgHIfCs6RaE2XSE3YcAV3Jhr1zpz4LvSS9Q+9/TWwwAsgAsHRx1kestWV9e317V2gCaRvgBdDBDsBIrs7e+vbe4QGOVAcHCjBkTkAxwWAAvgYGx1LS8/I4sa0bVW0rJW3yMublkobZSUNi8VNslJifVgal0qaZHhplpc1r5U2rdVk9IZ31PlJ++MpQdp6ORpeNJI3Xhy9u+19qA5+VEcK3ckw+1ZEVAqDO1Xezkgoa48tak4sbQnKrInKqw/JKrcKzTEkp5tT0k0CM8woaQ99kx+AKvGI1/ZMgAIbD9zjNFXlgVsslBNA5PVObEUpVSjZ7FkLHMW7F0BEvrq9tEpwRA7UWN3cBqxIFiGVQ76ytiPfgD6XXQh84AIEd2EOdvf39lUcOVDgGiQ1NY3H5nVu1zTJS1WAwHlBbDQvl+bxkusXC2vn85uXy5qWShqWioEpDbKSqvnsmrnctuWaLnlDk7wkcTzKI8WIWuGbG2tdk+NUmGaTmWGbkG/jnWFsmWvg0m4TMOikE/txaUVPU+9QUTM9pqgltaI1qawlIqc2objJPb7YNa7QMiTHIjjblJJpQsnQ80vT9UkGeaLtnQTrpwqCCMpYPWbk1BcZr6eACCSMQYFED8ki7tRABy0U+cYOhEIgJgJRVOhzwT2XAyXAAzZAj0AcRIHhBKEEB+xiW2vYSslCKgDiECKH6qNwIqVsIr1MklkuzGqQ5dctFtYtFPWvtnctNLQv1teJirMEMSn8yBhWYDjbz6HUJCHYgNEePNQVyumL4FDDx+gxE7SYxnIvv3RTtx5LXSct6uB4VXt/URMtraItubgluaQ5rqA+IreGFF3oFF1oEZJrEpJrFZpvQMk2oOQ8Csx6GJD5MDBTn5yhTybWGXr+6aeHCOb5B1SQBV4PCxylwk4BEQiIAERgDQVQIsNlyIpUBjvXl9d35lVdM9s7oERwiABBYE3EUMnhfgIFV7g9IdtbGNtgt8rKqxdz62WF1YuZNfN5tUv5tYv5BeKkNFpUk6winRrP32ELNkYE6xzWKq19oS6a6p/CC4tnB3pU2wbT3cndjoF9ziZ5Og35rixq+GBXCBRWT/jIQLRwJEE+lkFOf2iUp1FS1t7Sx6rr7C9u6M6s7kgpb40rbEgrayWnVdrHFjtElzjEFDnHlZlFFFhGFpuGFJiEFBgF5RkH5atKnnFIvnFIwSkh8npUHfQtkAWessBTNDkFRCBiuijfmpPh/TIz85C3vg1r0eKqZGlNvoankC2sbKyqunUVmKpTBv5iWGA4uV1eXcrKZW/SeGvM6e3xxd2FFYVsYK6vX9g7vSOY2hwDvoxtcGrZFcIdQWQ9mbs9QFtt7V1rrZwpaF4qcyw1DepzC6CS3BosXWrM/bscIKTqTyNZpesMt4Uyu8KY3aEsWoRgKH5qKEnESfFP1g9gO7mSvToZvMaegarW3tLG7ryaztTytvSKjuTiRp+0SlJsuXtKhWtihWNshXV0uVlEMRTzqBIoFlGlFlHl5pHlsH0aiKCahyzwGlvgSY6cAiLzyxswjEUwK1uEbFH5xpJ8TTi3sri8Ll5Yg+wyyFJfg4yynX3o0IW+mAPlPhCktbm9dCojhRrdu9nSLW+grjT3r3ax1/v5W0MZXQmTeyMjGyzu2iB3Y6hzriGlL6pL1mifZVInKepaaexcrssbTygUJtvkP/TvdvDrsA/odbTK0ffvdVT1yNj70508onXH+2MAIhxa9Dg7bpITL+IkOUVr+PU7WUeb9DFGmrpo9R19Na09la3d+fXd2dUdqeWtkXl1fum1Him1nqm1jgmVdgnV9rCOr7CMqbSCEl1hEVMJBTYQRJBThizwtAUOOXIKiIAGAY6ARyMQLy6tbM2vbE3N4Vlniyuba5t7EAQB/2XvQAkhVZwhgBAl5pvmHkcN6lpvaFmual2u6liu6ZTX9621xNFCWkSVtLXW3pWWjsU6+kZHkSA1pi2wdq7wr1Zvx/aS21YrG5YKi2fSYpkBgT0uNoWP/Hsc/bod7UuNvVttoU/Xv8fBscLIsdWqvtBtuDeC1x81MRw/yY0XshIcI+45NVhoh9/o6WY2d/XWtfXUtXbXtXWDHils6Mmp7Yb+moj8Rv+sRp/MOo/0BufkWoekWo/0WvuEGsu4Guu4Wqu/FQQR1ISQBc4SIiA0oB8X0kN4okWBZHl5bRtcGFx9bO3u7EI+iCqdDJLKlEo8nIphoZEh2bOxucyk9tXalqWqlqVqWHfI68pEWYH17l0bDW3LVV2r9UWTGX0bbeED3pRyl6hhv4gkI6sE3ebVsmppbu1CYQjNK5jubJWtTwaIdDoE9JEss/T8evDcEJ9We6McTfcUA8FANH8gBiAyMRw3yYx3i7ofzHJ/2+yNjJyCDiqjobW7vq2nvrW7sqWnsrmnvJVa1NCTVN4RlNsSlN9CyWnyz2lyTWvyymh0y2i2T221S2mzhZLcZpPciiCCmhCywFlCBNJAVjd3IQ4iXtoQSOWihVXoftndV+7iAVQY2PJYgBxgOEGWF1Y8i+z96h3b16ugCwa6YxoXoTe3vHa+ILDDNXc0sX21ukKSXT9fFNjt2rZS4dFlaR1m4j/kVJHjSIkxSufHFYwmV0pywug+QQwXqxxdMpWkEiCOABFyLwk8GkgwM03Xsqww7Kv1H2PGTbATxtnxY/2xQUkP/Rkk11j7R3omvYyhxrbuxjZqfVt3XUtndQsVQiQVzT25tV0xxW1hRa0RJV1hJdSA4n7HjC4tn/wPzQI+NnDUMHfSsrDWsXNDEEFNCFngLCGyuXsA0RDZKgzhBwECyak729CHq1TiKe0gPpRKXIvgTgy+xKfHZUuiottxx+QwGaRzszpukGKeoJdIDyufyCoSpuZPJ9nlGdYs5FqkPPCItDAs0x1K9qjNIiWMhOeOJAa1eJrG6Pm22j0MvxPQ50RAxKHY0KfNDrYhvBrQ5/wo/W5MuqWQnTjBjhcw40doUSGRer4MR5t446yMopYualN7d1N7T31LF3g0NW3U6pae0uaeilZaXmNfYk2/vlv0n27ra+rd83C8XVdgPcUMWREmrs0kroqTV6YTEERQE0IWOEuI7Cmx1a09GF+3tr23CsNw8XQy3IVRYHgyCLADNAguQmA5wPwLXQP73IpH0yHfFJLHGpeKqsX5se1B3i0O/tXOHZtVlaLcNG5ENMfPKEEzbTqqIME8qNoFOm4xdpGgjBw07F81lxM/HOhVZ0PudPz5xz8JGXKBJHdgh0ezlWOZiX+3o2+XQwDV6WGKhmPGQyk3BXyZ0cHYyf5Y86DbFIaTXuidwQFeRk5+aye1WQWRhnZqXRu1uYvezBghR2be03pgrPdBUarZnCBxaSJ1aSqhu8GnoSqqoiyjrKyktLSirKz2LCFypVNav8gpVS/+4V5jyxzVx/QygdUhzvjq5mNK7CsxUCG4BlERhEDH4/9hWH11Q850jFuJbc92LSSkQipqmTAzsz8+XxxvEHE/czyyc706nR8ZzvTRi7hjlqFr02i+VRrq2eNUkGqNjZTtdqdbVZnmTsaH0D18mh1sSg3uffpbu1Jj8F+AHX7dDrb5BnictcsefBz3Rqt7EZ+M0WKmh+NnOEk+Ifed26wCaE66Ibe7OxkNLe1tnT0tHSBGqO3UgWbqkKsXxdjgRnaCIbc3bGwwWsCMEwzFttcFFhWV9tLZtH4mvX+ATu+HAguCCMpY/eJmrJ4HRPgDocXZdgnRrtFRoV3djMdDcZ/3JyUvsWg+ybeE1LZeBWnsEPtIooV3b9WFs33uOP41fyahdi4vlO5BZrrbPXzfY5BUlGaz3JWhkfdAUReOiVqwgVznSjNKn3MA1dm1xuLPtm/zygOdO2w8GqzsS40C6c4WGboQWwWO2JY8DBl0ux1xvbXKRzyS3Fnjp5+nARkl5D6STvCt7i5GKxCks6e7j9HZxya5+NhafNJa4TLQSaG1+HXUeFTmOw/1hLGpoeXF4YwBVk9Pd1dXV3d3N5VK7evr6+npQRBBEEEQOUt3RshP3F3O31os3Fsu7Gn28vO472hnlpFV8CRGiKG6kQXBueK44BKfto0KgEiRMDmhNwTGxfh02n1g/E6RJDlmiExhegZlGrWXe5vm6mL9uRXt4Zlp5thg/khnhqg+zi5VN2jABXpkSIWG3hTt+apgUoe1e4PFo4S7kCcCnTWwBoiYZWtR6M56KXcLi5zmRzOCYvW8evBwCbnPUZtyh9471N3bTxvk2pM8rU0/6ah17+8IoDb71RbbZab6VFTVlBQk9TX7Drb7FeSnAjfm5+d3dnYODh5PVcDnj5wXRDDsGirIApfQAp/LJTti6MbLuDOVVU1VZcmD1IjVWZgMNUcynsqjh9UVOVoavxtIdu9nsA9p4pnlkD0dn9IYXTKd1bZanjUeTWlxyxMlOsXp+pRakjudPBptbNK1MUaZUZLmYmUwtkS1Cn2ADRdhuwMiRl5DkvtN03ceJmpEC3xCCs0Hc33ltaF27ZYWWdo2BY9INcaWOfp+IDeoJJN0TUq/k16qRkqBrWw00yZGw68X3BwcIkaBuqMjU8FhMaaG17vq3ehtAb1N/g3FDpmpvvX17Uzm8CCTl59OYnaS89Mdu7ppExMTT4kqiPacC0QuYdVBl4QscGiBzxhxDhDZ29sTCCbbOntLy0oHe6JmeEkwBK6nwae/jUxv9c1MMHC0025p7YSm6FFgl9AXWscpjaMHd63XJI+E2hcaxvIohbkO/n2Odzw//P5fvpvtbljWEtpf4IaJmycYefQi75GWFHjo3Jf/6b995ev/N2z8z3/59v/+X7+Ul2ODjVYsVgXZNpmb52rZFxnYlj+yzHkIMsSf6miSpgW9Njppt7OKSZsTubfDPw6AeUagE6fP3jXSxdzYtCDdjAHqo9G/rdolPcmturYR8AHxDsYAs6Agc6DVMy+V1NDYyuXxniIIJLvAnrOHCKqsyAKX3wIER84jJkI0M3BYBgfZNeVJkrFEVk9QZnp0bkZAVYFNb7MPOAtlWRbWBprZUwn5XekVw4WUVtcWeUUyN8Q8Q8eD5iioDfzSN//L737xey1t7Wv/4e951WRM1AxBEHoxBVvsSgmy+dWbv4eP+Nlvfn7tS9c++vBDrQc6QBNsgy4q8X2Ur+NYZWCZrW9TrG+tggi5h2SZp+fVbqubdq+xyacw09atxwYIAp04QWzX96//mt7iR20mU5u8c1Jsi4uKmEwO4AOCHXQ6vaW1OSXGLD8vsbObNjYmeG58p6e7A0EEuV1fRAucN0SgvYnFs5VVNdz+0OFuSlFBEpPJa2zqzM2OKs60pbX51mXbl8lz3Sh2BbRslzKLMklW2liETshN1177THedH/zrj6HXIyA0EKeDpA2baTyYrN+bbMBEbfKJHnd3bzj/tb+79r99+e/+6WtfDQ0JeePN37uZ3J6uD76fBqkijobJmvalBo4lRqreGQforDHJ0NRJuyegxViG38GT0GBnl4Mn1T7CW4fREViZZ5edEQWuFoPB6O3thVgprGk0Wn19A72fSaP1Ly4uHsLxc8GdvS1dx0AEkS9iE7r8SuG8r/D8IALuzOEUh4NMVl5OEqfXLy/TXyieFQqFdPpARxcNUJIRqpslTcnLtMysDXgYrhnLCsgXJ71v/lbYsPtvv/vN6x9/Am31h2/+5NqX/0N2pDs236UUtivFVGyevj0/6usfEJcWf+2//t0/fuf/+o9f/ZKHm4ebu+c3v/ZP7M6Q973+Esr00KR8bFdsAMN5oaMXIALOy6OkO0YpmmnxplZ1RngHMD5VIskg/YEn6UZBlndzS9fAIAuoAR0usBaJJdPTU0QXzOjo6GEM9VklYmBu617BQxBBEPkiWuD8IJKWlka4M7CGhz4whzi5Ock5yY/gfo7nlx0cTE9P9zMG6yqbg1p906Mf1bRRbHPNtf1vpU2G//LTH8fyvL/5375uZWH1wNHg73/w1S///hu25trYcq9ypls5R8MWWNjK9LWvXPuHf//a137xjW9c/9GXvv2V2KiYkNCw7/73f45KN9e1fT+Y5Xqb/KFZug70yBCJZ+ReR/MsnY8937GpfgiJZ7gv06VKY029Y+ynxxsWgOdCEAQ2CFKAEuHxeHD9L+iiToiLdczu9igeQhD5Ijah877PX/7znx9E4O49MjJy2PZAmIyPT7W0tOTnZcKMZsR+mAVAIpJ6Rrt0tLdHBbtGMvzetX0zgu3nHq7lXmTy5k//3Y3k9k8ffOuf3/ne127/8KHZPWx1UCmlKRfZStkwtr/0z7//7nd0fv0v73//22a/+Zfff08qkjCHWP/v17+C9WZ4ZhgFD7nd9P6zTe5D8Fmg4EPyukn+Xfbf/uM3yAx8ZA2x07HS2L780cP42xwGFwgCC1y5VCqFy1tfX9/c3DwKHwQfG2srTSNK/av53uVsBBEEkS+iBc4PItDAHB0diUZ46NdsbW0vL8uhcR7ugf9m1iT10xmDNHZEfYBTjenD2LvetZbtJV6/+NVPGN30fzb46e98P7Up9ndyMsPW2Ir5IYVsWCmDHuKNP+vf+F/ef/pziKZDWcCDh7pwKqlQ8O8/+yHGLSVVGUNWiHbkpxDysC7Uh8nNLLJ1IDLi22b3ow9+AOCAOKsqSkIyytAMZrgZFt+uKK9k9D8OhRADi1+wENfPoFG1vBKDW0T+1SP+NfyLg8glT4p/jZO7X9LyV9oyR2mi84OIRDq3u7erra192BSfBMeT7ZMx1L+2tjbKG00pSrAs0Alnemknacx0JZsbXC/MKXqLdFO3iKRf6JwYHICt8RVLwwdLLMUSG9ubDQ8O0ytwcuoK/Y39R7ROKpzz29/5zuZU20C2iyfDUSvqY89m64Bekm3BI58OW1K5iWuzpV2BoUHyXe2Im0TnrmeLNWTHO1eZ2dc/DEkOZA4Mgf/CZn+Ww/JcjhB5+zzW4AcmXuG9ywGN04FNUwFNUwgiKGP1dc5YvXiIzM7OSqRSUCLvv//+i+/qa6trEHSYGp8qoxZ6lNnAM2J8aY4Gj95RSukVBQmJCUlvWX2ia2gI3o9ibkA5P3Qg7j+QMpXSIQituLs63zS95+vlBR/B7W/AFoexiVqfTAOzfH2XOjOYYBXPdi808Gixcqu1dKo1eRDwqXmeFugUn47HQ3vxgCvNySzrgV+Cx9AAC3yZubm5F1ywQpUS0tvR/JG5bwR9LbBZCIXSMkNpmUYQQRBBEDnLtPeZmRmxWDw1NQXp4R999BGsn/Rrnm2lPNZIPi0tfijIq9UmYIDkYGaALbIxOa+6KK2joaGvrR5b5C6PUZUzg8qxTuVkHzZJx6RcWl1pT21tfXlBU14cNjeAifq6U5z96c46MZ9CxBQPpvY42uTre7Vbu1abe7TZ/OSvP/DrtgNfxrtNlSQCUwSoAq56CZ8GpwUODQxBXwzIoqcuj9BQh0oqLyNVh1IUQVsPahVRWsVQgtpmKa2SVwkR9NgoZIEzt8BTvtvFK5Hx8fHJyUmACIRXZTKZrq5uUVHRUXd4CLtymDzfPBfjJE1IKvXvtjcz0MFWR/cXxrFZFjbLxMRMxQRDMdmPLfGxsfbZnoqJxgLlaB/G68SLgIrxOzBuK9ZbHFFgYxqhEQRj/1WPvANdY5R6H6ZHtC7QN83S+avTHyn9Ljg+2vFpE3GIQLLZoOubj35eVV8+wBgAiDzVFwPxkcMQye7GqoW9i3MRO4wqD2qTQAlun1MVKZRXBpEzrz3ohMgChAU+NzrmiDFc5xcTAYjw+XyBQABrDoezsLAQHh7+6aefPpcj21vbZZUlSfnxxkkPIEgRznL77W9/gWELyok+pYCmHKcrJmnYxAC2wP/+t781EkFeSo3ih/gv91djg/WKgTolsxaDwmtsSXWNqCK5ZBiEUp182+3wSYlKDYxTNAPpJPNsbb2k2/qxd4hJz/Cnaqo8GuBI8CDpR+++nZiUxedzYWzuzvY2cZEq6fF49kZ4Sfb1uusYHk7bCOlaCOmYe7a8Goig6o4scK4W+Gx0zIVDBDQIJGhxudyhoaHBwUHIAQWUQMzy3XffDQoKegol0F8TEBDYQmu0SzLxpdoFUkm3vd7zsrfHMDkm4R7MDh/McpQSLrY+pfPO77CBLqyrcSMnfag+DeM2Ktk1B5xabKIF68v2STd+69YbMT2uXo2WgAnghWWu7sOEexFsj/cs/qAXdovSj/s4uEiBdYedaqYiR8tsw4+1PT7QcSe5Bw6zB2EW2MdTnqiucn9rI4Dsf8/SI6hnJbx3Jfh5+CCAgiCC37tQec0s8AohMjw8DOxgMpkEQWCBcSiQhQHCpLCw8IMPPqBQKODFEDSBHNblpeWajgq3OBKZjquD8CH3j5zfvvHBe5gCgikybEOIrUxgu7ODxVlYUy3WVt+XFoZJOpWCOmy6CVvqnqgI+Op//rJlqrGxn4NB3B14XoQKIg5WBQ/v+H7kT7f5w8c6ejEaxLSJhAyB3l/4oCC2/W1zKw3zEA2LwBtGfje1rcYmhXBJ6/LlhppKKxevT2woId2y8L5VwMcLCIIggvDxelrgFUIE2AF5n7AAOyAHFIbAwAYxeQ+sx8bGQKH4+/t7e3sXFxcTYQgWbygqIwwmYSbEAplGsqvS/8pXf2Blri+GaAi2iCkXcG0y24Mt0rC9MUxGx2TUjsIgrfd+6entm1VSdMvOzTbL7H7IdejB9e+0p9BddKI//SvpHePYR9c1g43T78N4GVW01UE3/hbonZBBkkH4wzuGoZpWQQCRe+aBdywov/2LxkcPHun5pzmVcqJoa+F9y8fiAymR17P9vGaa4nRf5xVCBDQIQRBiJBtwBDZggT5UCF52dnbCBsgTCLvCdmBgoK+vL6zd3TyMU/Cmjo/ZD7xJYZEe+Xlqu+SZWpJc3UjOJOuQQLfq7KCkKA8fTyeShbbZzd/nuWtyGL2LS7Lw6HgrUsRfLd5yazGHcTHQiQvTmul63SNlGd4wdLyu5Umq1wvoIYWznN8y+TXMIRI04Ggc//BT/SBtm9AH1sH3rSj3zQLumwdo2oR8/8dvRNFWQruWVBHT54Q/UEwEUeOLYoFXCJGBAZh8lA7UAHzAQgxjA5rABiwdqqW9vR3WBF/gYOAOqJJbxn+lDEEHir0/1f6eu4ZBtINvSO5hDIXOYNYXpQtb4iEfBFvsw8ar22sLt3b2R3gc76CEqor6N2/9jExXyQ2YQCRPMzc/xyRE64Nbbn81exTMcgpgWN9yMPrQ6pOoETfDmIe39IO0bEK1bEIAIiBG7lsE3jX3v2Pqq2kR9N2f/DqBo3wuLI7aiWIiX5R2dbpb+hV91yuECKgMcGEIiByygyAISA9YAB/EmuALrIEpsPh7BFhX4CnqFAbpHunhA4o+TAePBzj39yGDA3LYFhZlzGEuc6BdMNjIZOCzt0JKG4vJdPUOhEmgrT0t/Pvs4MlV5H4nLd9Px7kCB7KHjlWSbaWGc43RTUOH23pRVsX3LbMe3dQN/hxBLCng0dw1I98z9rlvRv7hz962T20Jpy6rz5HLBZGXTNB+mbdf6eTul/nix773MlvmKMa9Qojg05+r4iBAEGAEgQliWuMnOXKoRwhtAguHzf1A690glnMgzUHD0yKswOdQhsB0HpByAueEPd2drRnxD2uL/bOLqoRT46MjPAjbwv7wrFDvHht49p1p8f3KomoWc6ggv0zD3VLLxfK+QYS+Q/wdQx+b8rs3tfyBIKA+cEfGkoLHRCwDNcwDNEz97pn43jHyvv3I46d/uhkzsIUgckwW5rMt5zI3lWPb+bkecJktcwkhQigR6I4hZAjBERZ7OLe0dIjDgbAr0ORQgBAoOfRu8tIKtWNuBPU7GkbbZ+ZUPwkRmEAAINLQ3EH2N5KMpjDbvN/X8dK0i735wJw4jFzo7tdrb1Ol5+BpyxnmwAXwOMNWbvH3TIOM4SGaTvF3re3vWFtrWYUS7CDWKl8GYiLkeyZ+d419bht63TXx/bffXY9j7kJYRE2OICWC0t6vcNr7JYQIxDgIJXIYTIW0kW9+61ukP7zx+3/93l/v3M2vqGCyh+EAYAfQBFo7bBAODnuIfUv3RjDXyTDC1tkv6xAicrmcxWJNTIz7+IVoWCfCjMoFqRamNrausZ2U+DLiMJsiQ68+i/t6d5iDLDqNDvKEx2FZe8Y8sA63Dy41cE26Z+WqZw8vg8F5gUIQhIAIKJG7ABEj71sGnrcMvH53XSd2YBtBBCmRE1vgKDmDlMiziUSHtnrWOP0MXIbAQnTxQprZ9fua9SbaWFYMlhm9FuIRcf3PN//wWzdyMEcwllpQqHn/HsRXCYgAgDxIni6tRmYh3neMghckMwQgVlZWVKNsWcExGY6UNAkvurbEvbnc7r5VlEsonlPfP0w3bbgbnRrZ2tgBQgg+HeK7TXUVmjax5t4ZzhHVRu6pxm4pD0kxWtZhGhYBhzJE5c5QoIv3non/XWMcIrcNPN99YBXN2FRThly6PJEn6/E1z2uH5VzlOnHyy9xULuDrv+AjLrNlLqESGWAOHuaGABQ6e3t/+vWvYblxWHIIzpHUCCw1HMuJFnra677xiz7TBxF+vj29VMKpgfZvZu5qm29rGZRAim7p6sUnQ4MFAqvgHNEYjEdWAYUlsfsrRVWFzt2NfklRptruldTewcjygKrqGi6bBx8NH8piMXu7Wh46RjywpLjHNrpE1Vv4Zhu7Jxs4x+vYRtyDCIhF4CFHICZy3yxQA3dncIjcMfT+k7ZtdP/GlYfIkwQhts+7IV3mpnLe3/3F57/MlrmEEGGyWAxVvhnIAQhkfO9nP98I98VSQhtsDP+/r36l1ERXERfIcLHBkkOxgjjzd/7YxxxSdfjiy9Ag/Y8fGZqFeZBTByNLeS4J3U4BaTm5eW3dfT2D3Lo0SmOkw/RYyspsflaiVVej31BngCPJ2NCnrLqqHh6FmZiWRaUPdvVQg0IjIA7y0Dne0CXJK6HNI7bJJrAA9hi5Jes7RGlaPfZogCOP4yPg4Jj641FVI+8P71rp+qVE9K1cbYg8SxC05wtrgWMAd8SQhVfYOzPM4Q2xOJD6wRpiFVdW3fvh97DMKCw98u6vf2n/7lu//863f/jfvz4d4L4XTR4iWdi7e/bR+ghfBuIYzo52DmHVHnGtcVUTUeX8iFKef+YgiVIkKnDmFwVgPVH9Zd4bSyX8gZiMBAt6G6W91mew3UfX0oUSnrFS6SMuJ/dm+QXb6Tgl0wEKb13X9Uxs90po94xvtQsuMfFKN/ZIeUSK1bGN1LTCo6qHeSK4R2NGvmPkAx00P/rlu0Hts6Gdzx9rdwWSzf7mWXzmyHxhGw/64uo4s5dQiXB5o8AR1jBbJBZ//yc/xmLIWHwQlh5F+vBdLD8BB0pWNMgQGsn8nV/9jMXhHKaNsFnMdz81jK2ejq0URJWNRJfzYypGg/KYVhGta4xcjF89URYons6an85kdgUWZdrLZ/Paa327G/1Ls6ybassxmMaZkY3R4jID7QML+Z/ou7hG1/ukdHomtnnGtzmGVZh6ZZh4pBq4xOvZRxL4gHLIEfBxbhvjvby/+vOt2KG9ELW7Zi5jTAQ1HmQB9Z3ZSwgR/sQ0lzsCHKEODPzlW9+AYCqWFs7xcjR6+81tAEpsIBZLwVLCw2687+TjBy4P4chAyKM4L9vEJz++ZhLwcViC84f80gfrm5swxRyvt4TeRi7Jdbh+696KMAmeidVY7tLfQu5tci/MC8EOZAoxcCTZ093nnmWwfUipb2q3V1KHV3K7V2K7c0SVmU+mkUcq7uY4xkBkRNsuVMcuVNs2/IE1JL+r+mhMyNc17XT908KpcnV8GWIyEQQRJHmuhgWO7Dm6fO4Mhz/GGRWMjk76h0UWaX8KjsyItwM8gwoWSbAXrkriKBBb9fnwbU9ywCFE8NT4rnZN6/CE2qknIRJWPOyf3k9JLMeUEmxzCmMUzJd5azrnkILy7tpmejnd8fW11DN3xrAlbEOECZqw/vi3blq5xTb4JHVCNASKZ3KHT3KHc2S1pV8OeDSmnmmGziBGonTtogAlunaR2rZhEBnBu2ysg/7hH/4xafgAuEAA4qgS1C4NapeEd8DsRK9uUqIX3EDQfRhZ4EorES5/YnhkdHhkjMpg/ur/+RpWnJKhc5+ASIuNER5PVUEk5JP33Hz9IP56mJAG7sxHt3TSWhejy3FfhigRJVxyBs0mtGZPNoJtzipnGRgj/paO5afGZH2HmD/fsb1rFZ9bXIHtzypWJzF2QVmIjX1MJwRBPOJaoABEvBPbvRM7XKPrLP1zTL0zjb3SjVyTDZ3i9B2ioQBEdFQQuWsRcEPP5TcfPYgf2g3tnCcKQZMnVQkRK4nqng/vlEb2SCO6JGGdr2hmMwQRRIoTWeAqKZGxSb5geoDFH5+R/PrdD0bdrbHsmJyHGo02BlhahBLcGYBIQfJH3/1GeEwsQIR4ZiWMs4GctG9//0e6tuHxNZ+JkciykcCMPs+U3oz8YkwhUa5OYLwiX5KNbWi1gWu8lX+BuX8pvbcZ2xEr51lYf5y2hZ97fJtbTINbTKN7bDOOEtAjie1u0XgHjblvtqm3Soy4JRioOAKSRMsmDAbyQpfN7969Z5vSGNu/HkmVhffiJbJnKZK6FNkDG7IIfFsWQ1uKpi7F9smS6UvJ9OUkmiymV3YZM1ZPVL3QwV8EC1whiLBGpzkjAgabzxwe5UxMf/3//AesIAFLCcOSQnGCxFOwovj7//bdt69fH+WPwgNve2k4QoAj/FHO+5p28dUQExk9FCMxFXxK7iDERy0o1WuAic0ZTNSdQba1DK4GRkDRds7alY9im2JM2FwQaG0Z1qQiyGOIuMe2gCoBJeIWAxAptPDLMfdViRG3ZHBqcCViC0FWGEoTfPORxy/fu5M9hcXS16Jpq7H9azH96zGq7Zj+lWj6Sgx9Nb5/NWlgPW1wNZmxksteK+FuFA2v57DWEESuRlDgi0CKF3zHKwSR7uGpXs44lTlC54yPCBcMHd2iP3kPIiO4AAGUZEV//x//8yNLmyXZ8tAwe2CQ2c8YoNH7afQBgWDsQy2nxPqZJ90Z8GjCijj+qVTvtF7vCJgZYAFbE/Sme+l55WgY+983p9wz9cMOZjE5H+uNuWUe6pnQ7hHXDMiAHDOPOBAjsG4Gj8Ytps4msMjSP9fcN4uACKFEdGzD8RG9VsHf++lvcoVY4uB2wuCWqhAb+DqRuZXA3EoZ2sxgbeXztkpGdspHNytHN6vHtmrHNqtHt68SRM415+oyp1Sd6xc/9uQXaZmjOHKFINIxIukanuxkT3YMT1PZgqlV5X/62td3In1Bj7SZ60NkpLCySjK/NCqYHJ0QDrB4g0NsDoc/MDTMHxvXtfBOqBNGlX3WO0NERsiZNN/ULseo9tKyEpgzkVsZ/sdbDl7JnR7xbaZOYThZpG36xjauCZ0gPdzjWlQiBTjS5BEH62aIjLhE1dpScIiYgUfjlW7olvyQFKtvD+5MJCS8//QP7+fOYElDuypkbD9Vkod2crm7paN7NYK9mnFY7zRO7rZM7bVM7dZP7NSP7yCIoAF4l2gA3usAEcEyY2KBOrrQxZM2D8+28ubbxxb/y3/6P374lX/87Uc3pubXBELJEIc3Minp58+wBEImf4rJ5rK5fJ5gwtbRObJi4sneGWI7rGjYL7XLP4Nq4lfR0dVEr4qyDK1XRT1aTP2KF/mNFrbOpJhOIphKFCK2Cgeo1k3OkTW2lEIVRLJMvdIMnBMeOsTok2I/uGf5hxu6hbNYMnsvaWjnqZIIWBnayeHuVwv2Gyf3m6eg7LUI99qm9zuF+63Tu+2wFu4jiCCIIIic5cOrirhbXZMbDPF698RqHnu9mLXSLNhoEe53Tq5MyhW9Y/PdPDGNLx4cm6XzZxijsz0jos7Bkf5hwQCLwx4Xf3jfIrV5nkg2e7JQsvsDMvt8UvucXP10DB29krrxuGlsi1dSlyEp0s3RxDulF89wV/XIHPbOEBvg3ThFVFsH5FuR8yCwis8MADLEMfaWgcf/evNPZYtYCnsvmbWbzII1vpHE2k1g7qZzDnK4u1m8/WL+Pl2qHJhTdIsUzdP7rTMHXeKDThFeesSKHtEBggiCCILIWUIkhXOQyVP2TG/2TW/kDq9mcHYrRrebJnYbR9eYM6v0yaVK1lzj8HwPX9LHn+3jSxo4syUMUf2QkMGfGpqYy6qnalsFJTdKop7o6CUiI+T0Xt8stp/9HS3bGL+UbhwW0IOb1EGKaQ2zfdcprtsnqQNe4gXPdseTRAiCuEY3OoSWW5FzzSFVxDPNyDUJ8s3MvTP/7kt/XzKPpXIUqcMHqqJIYh+kDB9Ujh9UTR50iA7qpw5KBfv1U/usRcW4XDG+fECXHlBn9xlzSprkgC45GJxT0KUKBBEEEQSRs4RIGgdvjdl8ZZNgo5y7lsbaTecqivl7OeyNKv4GeDeVQ9JG/nI1b7VieKmZIwWm5DGXc1lrJfztZo6kcXzTnJJo6Bid3DD7JEfCS/iB2YNuqQOV0QZm/sX+mf1+wJT0Pv9MuksCNYd8z9CnxDeD5p1K9Umjeid3ecbjHg04MjCEF3wZu6BiCKmaQJ6ISoaYuKd+8/tvBGRVFU0DRJQpw8o0jiKdpyifUNRN7tdNKTvEChwcy4qmaSVTejCypBStHci2FZI1JV92ABBhLyjYiwrukkK0rhoE/1TU6qjHsHw2qMnzaaNjqj3EAS9+cOHj0TEvTDQ8qWN8bGhQnQMuMnyozvVcnmMu0jIn/ekvYdq76odTpHGhZR5ks9YzWZupnIMUjgIgksHeKuLtFDEXSrhrGRxF9uByNlOeN7iUP7gIciCFi+Wx1vMHZRUTCrOoAj3roNRmKRFkBYJ4ReR5hBdbeCf3ZNvfMA7QdYh7ZB9k7Bikax30sUloeeSjO8aeTr7Rjl4UC6dAC/dED+jWjYZJABqcI2udwqutyPmQaQZp7zCuF2Y5+1jH9YPbd6cwrHFamcpVFo8pKicOKsYPaFIlc/6gUww+i2Jg4WByZV+6rhCuKgXLCvG6Ur6tXN1RLGwpR2QK4Zpidl0xvQIvkTujAh+OUk/Pw3J5GvBluJKLtMzrAhG8RoEAgdt7xvBuKhcX/KBQ0ob3UzjK7OHNVPZ+Fnsjnb2L74R/De+nc/EDACVpHAxe5k1jQfXMj+6ZJ9WJ4upElJhsfo0Ht9aPVuzRnu+d4KXJrPCgFjh3ZNu2Z9gWhD0siTYn23zSkm7TlGoT66YZbP2+mV+Ba3SDU0QNRENAhuC5qp5pMC8RpKve0HP/2Tsf8vYx1oJiQLrXKVKUCJRM8FCkB+MryjG5UrBywJEp+XIlMEK6tje/ti3dxMRrB9INxdqOQirfmt8CYaKE9dK2Qr6DIIIg8jcLHNmNeoF4fc0gkqHCx+M1YEVlaljj7ADEqP5L7Dws4FMQ29kCLHca+0DfysK3OCfBZ6CSTCsP6C3xc7LSCHfR7i7xacx0qk2xr0myyQgyMtT5OMD+Xk2KfUmsdZCjVpy7lpYxySW6EQbvksLK8U4ZnyxL3zwd26if/Pojp+CYgV2sR6Iclik50k3m1DxrbqdbohxZVEKH9OKmYlq+xxUtC5d3plYU85sHC6tbi6vbc/LNxS3lxq5yZXNvdmF5TrYGL5e3sY1dFBNBEEEQecY9/8xzP+KBIocHnFSmgTwhRMqxGlMFF6xsHtMPy2tKtumvDASIwDoz2Cw/0rKzwKsxC4dIZZJNQbgFxVEjLciwOtk+O9QkxEk7yvWBkZGZQ3gNKazSOarWKrDoI03Hb/7wDU1Tu37JumAZY86sceZ2J1YxjljOnxSNTc5MLaxOrGDjEplkQSZdWh2dEo9Nzy6sbYvmV6Zn50WSOZF4Vrq0srWvXN3an5HOi6XzC7IVIMjWPoZiIsidQYHVswysHkuHEx2QM45ZRxcwyzyAIH1l5J5iX1yPlPq15rg1ZTlXp9qVJ1hXxdkCPioT7aoS7VIDDUKddaLdtI2MDGCCRS2byP/xr7/96c9/7RocPbWFCeQYe2ZFNC8fF81OSWUS+Y5wYVU4OzchFIskC6I52eziqlAkFUkXhGLpxDS+c3JaPDMrlcxJRbMioUgok8vX1jbnFhal89K5hbmVlbXNPZQngpQIUiIXqERORBDCqbFN6+jKsu+vBHb4A0RgDTIEh0imc02yXUW8VXm8bUWCTUWCbXWSXaz3o1AXnVhP3Tuffnz/kUloTKxIvrWJYTOyrVHx0qRQyhctzi3KAROzcwuSucWZ2flZ6fy0cAYYIZ2TiqUS0ax4RiwSS2aFopnpmWkoQvEMQAQWeIAWrOcXFuYX4b1S6cLcwtKCfHUFKRGkRJASubxKBDyaPBGm+8mbvMYwaolfD3CkxLer0Lstx70xw+kxRBIAIjhHqpMcQp21w11043z0v//d/4nP8KzA5pY3pEtrormlKfH81OyCdGFJPL8kFM3O4ApjdlooBGRMTE8BO0T4MiMWi2dmZlTboomJCdgGdkikElgLhUJYw36JRDIrkQBQ4KlaC0uLCCIIIggilxcimXwsirH66OYbdekufUCQUj9ACUCkNce9IZNUnWxXHmdTroJIZYJtYZR5sJNWlIe+qeZfbrzzb7wp6ZxsfU4mn1sC6TE/I5aA3sDVh0g0JRROzwjFwIUZIWBicnJSBOJDIoFtmFwaXoIWIfZPTcKxQiDL1BS+ATthgZewAFkWlxBEnlDyJ42QnVSXXt3jL9Iyr1PvzJn84tljmFsFtzXNjlEVQC3xp5b6H0KkPoNUlYJDRCVDbKuS7FLIhhAQiXTTczC4bnH/rbLalkX5qnh+UQqx0rkllYcimgYESMRAkKlpiHmIAROABlgT7ADpAeuxsTFYE0ARqBbYhsOAI7hWUekUAiXg1Ejm55ASQUoEKZHLq0SyRjHvGn5OgDajKhCiIUAQAiItOa4AkeoUu4q/KZGaJDvolwlz0YES6qRlcvd3JVWNiytr02IpgANCGxAeBRdmfHJicnpqRjQDvAAowDIyMjI8PMzlcgEWsAaCwAO3YM+4auHz+bANx8CRBGhgTSyAEik4NXOXb2YzVd7X8+f4OBO0X4ZsiHP9Imd+cqRETvQEvDO3P0zzoXv3bX5jGPTOHEKkOduVcGcqYq3AnYF+mYwQY4BIuKtuhJtemPOD3/z4m3PLm5LFZYiLjvD5Q2zWlHB6YmoSoMAbGeGPjPB4PA6HA3SANTw/GJ5xMTQ0BA/rBILANjxADzaAKUAQginEwTD9GlAGAAR8IdwcWJASQUoEKZHLq0SgfeZOYjoBmcUhesMNYX2lfn2lZFAiAJH6dMfqJNuKOCuIhoAvAyHVGM+HkW66kc6aP/wfX/GnhG3sKWYXZNMzYu4Ij8lm8UdHefwRLofL5XCAC8ALoAb+fBx4Xh6TCRwBcMDzxgmawDZsHC4EXAiaAFkAQIASYAqIF9AjCCIIIggilxoi0ERhrO3v7poEWL7fnulEK/OlV/i35bk3Zzo3ppNqU2zzws3DnTVDHO6898Z33nnzp0HhYUvrB+s7B7Nz0KcLMdQZXICM8nk4PThAASACwIIgCGwQC1CDWIidBD7g5eFhxB54L6FKCJTAGrQJggiCCILIpYYIDKtJ52EVi5hLdtvdRwb//pMfeFl9kkvRSfR4QLb+2Pjmbz599+fWVoZhyZl9vKltmPhsG1tY3pAsyiCCChEMwfjEqGBsZJQPCIE2TxCEWA55QUCE0CPwNF+CHbA8SRP4F4EeQpUQHIEFthFEEEQQRC43RPDRNwcFo4qaGaxpAevdxHpXsLi6wcS6/sL2wS7+zCyGzSqw2V1MuoHNrh1I5BvzcoiGrE6LZicmpvljAv7YKG8EVw1E+ycUB8ERIhpC0ORQjBzuJDhC/Ivwd4g9sCZEDawRRD5rPxcZPjzz2Nu5nvAiLXPSmPplnQrgGC6f9PeC0cDZfKx8XFE5qWycUjYLsU4p1jOP8dew6XVsTKaAofqT8gPRqlKyDqNst2F0nHheNimSjE1Oj44KRsYgmIqHUYnwB+GnEAQhdMchR4idBETgYEK2EHsOlciTfg1BJaREkBJBSuRyKxGuMhMmKOEcZI/ArB+KRqGiRahomjpoFiroc4rRZRh0i43L8JnHYOIP8equaHlLKluHcXSTM2LB5NT4xCQoEXBnIIRBQOTQlzmUHofC5NCvIcKroDVgfUgQQoMQy2GoFdiEIIIggiByySECc44BR3CUFI0pQY80Th+0CKEoOkVK5oJSIFdOybHpNWxiGeYZO5hd2ZGsbM4vr4ASmZgRjYMYGRNweHhUlWj/h30uhxrkcD9g4rCX9zBo8mSvDSFPYCHcGaKzBkEEQQRB5FJD5KS+zys5Hk2PiGY2exFHUEzk1SabvRIonPRDIT30s5kBYfuoOVYPDyNmVH22EAccNcfq5z7lqM94fCVHPZXuc9f51GWjl6+FBU740x9TkY6pjS+uyeq0hdfC5mfRrBBEUFW4NBZAEDmLJv15WXARPy6CyEVY+eJ/1yv5iQgiCCLInbmSTffyVFwEkcvzW5zkSp4KoqDnzpw0qvR6H48CqyiwemwNR70zqHcG9c58rqPgsM0ce0O9SMIe25Jf4QEIIggiCCIIIi+Vqo8ggiCCIIIggiBy3HMPjlV6SJdehjnf0AC8Yyvq5TwAKRGkRJASQUoEKZHzVCI0rqCPM8bgjjP5U8zR6aHRKe74zMikmEOsBcLhsWnY4E7A4wjF40LppGhhcnZhUrwglMDDPmC9KJQswNBsyaJcPL8MG/AQENizIN/IySuMjSaNzyzJ1mH49io84pT41/Ts4ox0Ad4LG7CGcw6OTHYMcNsGuM39nLI2eucAr4nGTq9oiy5osA/LMfBJuOcYpkEK13COvO9yBuXJ291FarSrokSOCrh+EfY/VwohJXKMEgFMsAVTQAr22AyAgyuY4U2IRqclUManJYJpyTAcMDoFG/wJETzAFObpX1pZX1jGoUBwAcABzzGF7fnlVXiC6ZxsBfbMLqxk5VfvyLILM0mDTP6BElvE37UGrCFQQrwRpsmckcomhFL43F72WB97jDsu7mMLBkcmgG7Nvazcuh7vxJIHrtF3HELvkyI0nCI0XpojCCKEBb4IUDjFd3yWIwgix0BEIJQCNXBGTM0CLAgZMjKJ7wGtIZ5b4o5NA2hAhqja/DIQRL6+tShfm5etLq5sEBwBoTEvW4EC/11axXcuyDdT0lI2pNk7sqKaYvu6hjYlhsF/Vzd3CFUiWcJxAxtwWpAwozMS5sjU6PQskIs/KR4am+IKhD2s0dJWWmZ1Z1hurb5HrLZbzAOXKI2/oeTUNEEQQRB5MVye4giCyDEQAW8CeDExMwcFWi9vUjw6NQs74SXoBemSHP7LGpsG1wMaPwCCgAgOi5X15bVNoIl0Qb4gXyP2Q5Hhx2zMLW0nRZuvzRfMT2Usi7N6m72DgsjAkY2d/eX1LZAkUFSKBmC0ArpmbmkFPKOxKfxKQJvMyTY4/Kl+3lR9D7OqnZFb1xmUXqnpGgUQ0XGL1nCKvA+S5PPejfpMQRBBEEEQOXGU6AWeP8ELWAMmxlT+y7hQMo/7HctADVWkQzYpnp+YmZ9fWpWvASY2ofEDKUBTAERgY2VjB9aAj/XN7Y2tHWDEAYZFhJP3VwqXZrKXZnJEo8njrITBLj9zo5vTItkeTLe7uqFiDU4iKMCRRTkAZR0iKQvLmzt7GDkkoLiyfnJ2kTEyVU8dLG1jROXVesYX2oZk2EbkaLlG4xBxirjvAiiBdSROECfVWo2CIIIggiBylhDBn4SsinESYgSKZHFlRooHLIj4BeGqLCytLq9urmxsAzvWN3fWNrY2t3c3tnYPt1fXt7a2dra24b8wKTeWkhK/LMoAgiwKs6e4iSxqRG8jmdkV5O18o7CkCg6Qb2xD2dg52DvAdvewnS1MLttuaeiMz4+/bvhuQXnp6paSPy2ZnJGyxoUNvUNple1+KaU+yaX6XgkAkQcuuB4Bjmi6RN1zCseBAm6OC44VFUeINVGe3Mb3IIggiCCInC1EoItkEXgxuyCHKXDBp4AIBbyEQoRLF+Trq9Dat/cIagA+tnf2trZ39w8Ue/v7e3sHxEuiwPY+BFFVS2Wu1c58waowW8ROGO4I6W8i99T60Fv8yzLMw0O8iYOoXYyY/Gj7ODOdkFuacR/eIP9J0+3TlJKU5LzU/PwKPn9+YXlHJF3mCGbqeoYi8uqDMipJMXlGvqkaLjF3SZFarrHarjE67rGazpF4uASKSp78jR3QoYN7PQAXohDKBUHk2Mz3U8QjX6e3oJjIcxDzAndGPL8kmoMYxOry+iZ0oMAGvCTCpbCGl7ATHnq6vgmA2N1VIQPWeMExooCyv69QMYVABzbKEVTVV5Y0FyVWeeT3RaX2hGYxolN6w5NbKWlNgdn1AdklroU51uEej94z/aNu1g3zGn3/AaeQQdeAXufAXlIA3cmbauPVY+nWY6YZ85GFr/nQ4IREtk7nTuTU9cQWNobl1LomFJkFpLrEFVsHZ2m5xep4JOh5xOt5xj9wjdF0jdFwjlKxA9bR912gRN2H6IkzvoadSImoOST1dYLCSb8LgsjJIAL9shABkS5Bxy1EN7Zla1sgSVSqZBWEydLK5sbO3srGFoRUt7dxiAA5ABigN3Z29/f3lbAQ7OAM8RLyYgIKPdKHo5rXS5rXSlrWKppXypvk5bBuWa2A0rxa0bRa3rJZ2bJZUyXKzm5L6q4LEA/F5RXaG8Vq+PY6BvY6+XXa++LFwa/LgUx1JA843KX8JTExd1yy2tLPjS9pTSxrjyls8kmt8koqC8+ttQ3N1vJI1PFO0vNKeuiVpOOV+MA99r5LDOADgHIfCs6RaE2XSE3YcAV3JhopETUTQy8yiUbNSzrbw44dgkh8HOqdOaZ3BoKjj7M8ZKsr69vr27tAE0jfAC+GCHYCRHZ39ta39wgNcqA4OFCCI3MAjgsABfAxNjqWlp6RxY1p26poWStvkZc3LZU2ykoaFoubZKXE+rA0LpU0yfDSLC9rXittWqvJ6A3vqPOT9sdTgrT1cjS8aCRvvDh6d9v7UB38qI4UupNh9q2IqBQGd6q8nZFQ1h5b1JxY2hKUWROVVx+SVW4VmmNITjenpJsEZphR0h76Jj8AVeIRr+2ZAAU2HrjHaarKA7dYKAgiajZFBBEEEbUeXiVf3V5aJTgiB2qsbm4DVuAJY/ByZW1HvgF9LrsQ+MAFCO7CHOzu7+2rOHKgwDVIamoaj83r3K5pkpeqAIHzgthoXi7N4yXXLxbWzuc3L5c1LZU0LBUDUxpkJVXz2TVzuW3LNV3yhiZ5SeJ4lEeKEbXCNzfWuibHqTDNJjPDNiHfxjvD2DLXwKXdJmDQSSf249KKnqbeoaJmekxRS2pFa1JZS0RObUJxk3t8sWtcoWVIjkVwtikl04SSoeeXpuuTDPJE2zsJ1k8VBBEEkReHlpE7czJ3BhLGoECih2QRd2qggxaKfGMHQiEQE4EoKvS54J7LgRLgARugRyAOosBwglCCA3axrTVspWQhFQBxCJFD9VE4kVI2kV4mySwXZjXI8usWC+sWivpX27sWGtoX6+tExVmCmBR+ZAwrMJzt51BqkhBswGgPHuoK5fRFcKjhY/SYCVpMY7mXX7qpW4+lrpMWdXC8qr2/qImWVtGWXNySXNIcV1AfkVtDii50ii60CMk1Ccm1Cs03oGQbUHIeBWY9DMh8GJipT87QJxPrDD3/dAQRBBEEkbPsnYGACEAE1lAAJTJchqxIZbBzfXl9Z17VNbO9A0oEhwgQBNZEDJUc7idQcIXbE7K9hbENdqusvHoxt15WWL2YWTOfV7uUX7uYXyBOSqNFNckq0qnx/B22YGNEsM5hrdLaF+qiqf4pvLB4dqBHtW0w3Z3c7RjY52ySp9OQ78qihg92hUBh9YSPDEQLRxLkYxnk9IdGeRolZe0tfay6zv7ihu7M6o6U8ta4woa0slZyWqV9bLFDdIlDTJFzXJlZRIFlZLFpSIFJSIFRUJ5xUL6q5BmH5BuHFCCIIIggiJwlRCBiuijfmpPh/TIz85C3vg1r0eKqZGlNvoankC2sbKyqunUVmKpTBv5iWGA4uV1eXcrKZW/SeGvM6e3xxd2FFYVsYK6vX9g7vSOY2hwDvoxtcGrZFcIdQWQ9mbs9QFtt7V1rrZwpaF4qcyw1DepzC6CS3BosXWrM/bscIKTqTyNZpesMt4Uyu8KY3aEsWoRgKH5qKEnESfFP1g9gO7mSvToZvMaegarW3tLG7ryaztTytvSKjuTiRp+0SlJsuXtKhWtihWNshXV0uVlEMRTzqBIoFlGlFlHl5pHlsH3VIXLUM3pf4/1qUu+kh6HA6glQ8oII2fzyBgxjEczKFiFbVL6xJF8Tzq0sLq+LF9Yguwyy1Ncgo2xnHzp0oS/mQLkPBGltbi+dykihRvdutnTLG6grzf2rXez1fv7WUEZXwuTeyMgGi7s2yN0Y6pxrSOmL6pI12meZ1EmKulYaO5fr8sYTCoXJNvkP/bsd/DrsA3odrXL0/XsdVT0y9v50J49o3fH+GIAIhxY9zo6b5MSLOElO0Rp+/U7W0SZ9jJGmLlp9R19Na09la3d+fXd2dUdqeWtkXp1feq1HSq1naq1jQqVdQrU9rOMrLGMqraBEV1jEVEKBDQSRq4ibkwJCneMRRM4GIqBBgCPg0QjEi0srW/MrW1NzeNbZ4srm2uYeBEHAf9k7UEJIFWcIIESJ+aa5x1GDutYbWparWperOpZrOuX1fWstcbSQFlElba21d6WlY7GOvtFRJEiNaQusnSv8q9Xbsb3kttXKhqXC4pm0WGZAYI+LTeEj/x5Hv25H+1Jj71Zb6NP173FwrDBybLWqL3Qb7o3g9UdNDMdPcuOFrATHiHtODRba4Td6upnNXb11bT11rd11bd2gRwobenJqu6G/JiK/0T+r0SezziO9wTm51iGp1iO91j6hxjKuxjqu1upvBUHkKkIErlkdLpzoGASRs4EICA3ox4X0EJ5oUSBZXl7bBhcGVx9buzu7kA+iSieDpDKlEg+nYlhoZEj2bGwuM6l9tbZlqaplqRrWHfK6MlFWYL1710ZD23JV12p90WRG30Zb+IA3pdwlatgvIsnIKkG3ebWsWppbu1AYQvMKpjtbZeuTASKdDgF9JMssPb8ePDfEp9XeKEfTPcVAMBDNH4gBiEwMx00y492i7gez3N82eyMjp6CDymho7a5v66lv7a5s6als7ilvpRY19CSVdwTltgTlt1BymvxzmlzTmrwyGt0ymu1TW+1S2myhJLfZJLciiCCIoJjICfDxuKP7iefFPIVqSANZ3dyFOIh4aUMglYsWVqH7ZXdfuYsHUGFgy2MBcoDhBFleWPEssverd2xfr4IuGOiOaVyE3tzy2vmCwA7X3NHE9tXqCkl2/XxRYLdr20qFR5eldZiJ/5BTRY4jJcYonR9XMJpcKckJo/sEMVyscnTJVJJKgDgCRMi9JPBoIMHMNF3LssKwr9Z/jBk3wU4YZ8eP9ccGJT30Z5BcY+0f6Zn0MoYa27ob26j1bd11LZ3VLVQIkVQ09+TWdsUUt4UVtUaUdIWVUAOK+x0zurR88j80C/jYwFHD3EnLwlrHzg1BBEEEQeQsIbK5ewDRENkqDOEHAQLJqTvb0IerVOIp7SA+lEpci+BODL7Ep8dlS6Ki23HH5DAZpHOzOm6QYp6gl0gPK5/IKhKm5k8n2eUZ1izkWqQ88Ii0MCzTHUr2qM0iJYyE544kBrV4msbo+bbaPQy/E9DnREDEodjQp80OtiG8GtDn/Cj9bky6pZCdOMGOFzDjR2hRIZF6vgxHm3jjrIyili5qU3t3U3tPfUsXeDQ1bdTqlp7S5p6KVlpeY19iTb++W/Sfbutr6t3zcLxdV2A9xQxZESauzSSuipNXphMQRBBEEETOEiJ7Smx1aw/G161t763CMFw8nQx3YRQYngwC7AANgosQWA4w/0LXwD634tF0yDeF5LHGpaJqcX5se5B3i4N/tXPHZlWlKDeNGxHN8TNK0EybjipIMA+qdoGOW4xdJCgjBw37V83lxA8HetXZkDsdf/7xT0KGXCDJHdjh0WzlWGbi3+3o2+UQQHV6mKLhmPFQyk0BX2Z0MHayP9Y86DaF4aQXemdwgJeRk9/aSW1WQaShnVrXRm3uojczRsiRmfe0HhjrfVCUajYnSFyaSF2aSuhu8GmoiqooyygrKyktrSgrq70qEMETrk866uO1Pv5E8Q51DkYxkROg5AW9M0Oc8dXNx5TYV2KgQnANoiIIgY7H/8Ow+uqGnOkYtxLbnu1aSEiFVNQyYWZmf3y+ON4g4n7meGTnenU6PzKc6aMXcccsQ9em0XyrNNSzx6kg1RobKdvtTreqMs2djA+he/g0O9iUGtz79Ld2pcbgvwA7/LodbPMN8Dhrlz34OO6NVvciPhmjxUwPx89wknxC7ju3WQXQnHRDbnd3Mhpa2ts6e1o6QIxQ26kDzdQhVy+KscGN7ARDbm/Y2GC0gBknGIptrwssKirtpbNp/Ux6/wCd3g8FlisEEcSRJzGqDhdOdAyCyNlAhD8QWpxtlxDtGh0V2tXNeDwU93l/UvISi+aTfEtIbetVkMYOsY8kWnj3Vl042+eO41/zZxJq5/JC6R5kprvdw/c9BklFaTbLXRkaeQ8UdeGYqAUbyHWuNKP0OQdQnV1rLP5s+zavPNC5w8ajwcq+1CiQ7myRoQuxVeCIbcnDkEG32xHXW6t8xCPJnTV++nkakFFC7iPpBN/q7mK0AkE6e7r7GJ19bJKLj63FJ60VLgOdFFqLX0eNR2W+81BPGJsaWl4czhhg9fR0d3V1dXd3U6nUvr6+np6eqwWRF7QKDLv23PJYq3t+bpJ37G8v1W9mr2rszFH6S/0rV/NIBJGzgYiQn7i7nL+1WLi3XNjT7OXncd/Rziwjq+BJjBBDdSMLgnPFccElPm0bFQCRImFyQm8IjIvx6bT7wPidIklyzBCZwvQMyjRqL/c2zdXF+nMr2sMz08yxwfyRzgxRfZxdqm7QgAv0yJAKDb0p2vNVwaQOa/cGi0cJdyFPBDprYA0QMcvWotCd9VLuFhY5zY9mBMXqefXg4RJyn6M25Q69d6i7t582yLUneVqbftJR697fEUBt9qsttstM9amoqikpSOpr9h1s9yvITwVuzM/P7+zsHBw8nqqAzx9BEFGzjSGIPO6XeMpex7LnENhPbTym+wvZ//gjj/iMv3WUPP/R8Gr+rqc77AW1obKqqaoseZAasToLk6HmSMZTefSwuiJHS+N3A8nu/Qz2IU08sxyyp+NTGqNLprPaVsuzxqMpLW55okSnOF2fUktyp5NHo41NujbGKDNK0lysDMaWqFahD7DhImx3QMTIa0hyv2n6zsNEjWiBT0ih+WCur7w21K7d0iJL26bgEanG2DJH3w/kBpVkkq5J6XfSS9VIKbCVjWbaxGj49YKbg0PEKFB3dGQqOCzG1PB6V70bvS2gt8m/odghM9W3vr6dyRweZPLy00nMTnJ+umNXN21iYuIpUQXRHgQRNWsRggiCiFqjePf29gSCybbO3tKy0sGeqBleEgyB62nw6W8j01t9MxMMHO20W1o7oSl6FNgl9IXWcUrj6MFd6zXJI6H2hYaxPEphroN/n+Mdzw+//5fvZrsblrWE9he4YeLmCUYevch7pCXl2rVrX/6n//aVr//fsPE//+Xb//t//VJejg02WrFYFWTbZG6eq2VfZGBb/sgy5yHIEH+qo0maFvTa6KTdziombU7k3g7/OADmGYFOnD5710gXc2PTgnQzBqiPRv+2apf0JLfq2kbAB8Q7GAPMgoLMgVbPvFRSQ2Mrl8d7iiCQ7AJ7EEQQRFDvzAkcmb/JH8/Du8rT0kzVzsBhGRxk15QnScYSWT1BmenRuRkBVQU2vc0+4CyUZVlYG2hmTyXkd6VXDBdSWl1b5BXJ3BDzDB0PmqOgNvBL3/wvv/vF77W0ta/9h7/nVZMxUTMEQejFFGyxKyXI5ldv/h4+4me/+fm1L1376MMPtR7oAE2wDbqoxPdRvo5jlYFltr5Nsb61CiLkHpJlnp5Xu61u2r3GJp/CTFu3HhsgCHTiBLFd37/+a3qLH7WZTG3yzkmxLS4qYjI5gA8IdtDp9JbW5pQYs/y8xM5u2tiY4LnxnZ7uDgQRBBEEkbOHCLQ3sXi2sqqG2x863E0pKkhiMnmNTZ252VHFmba0Nt+6bPsyea4bxa6Alu1SZlEmyUobi9AJuenaa5/prvODf/0x9HoEhAbidJC0YTONB5P1e5MNmKhNPtHj7u4N57/2d9f+ty//3T997auhISFvvPl7N5Pb0/XB99MgVcTRMFnTvtTAscRI1TvjAJ01JhmaOmn3BLQYy/A7eBIa7Oxy8KTaR3jrMDoCK/PssjOiwNViMBi9vb0QK4U1jUarr2+g9zNptP7FxUWCIIcTrz1+ubel6xh42SBy1JPxvjj7n4IaCqwe2bd/OWMi4M4ctrRBJisvJ4nT65eX6S8UzwqFQjp9oKOLBijJCNXNkqbkZVpm1gY8DNeMZQXki5PeN38rbNj9t9/95vWPP4FW+sM3f3Lty/8hO9Idm+9SCtuVYio2T9+eH/X1D4hLi7/2X//uH7/zf/3Hr37Jw83Dzd3zm1/7J3ZnyPtefwllemhSPrYrNoDhvNDRCxAB5+VR0h2jFM20eFOrOiO8AxifKpFkkP7Ak3SjIMu7uaVrYJAF1IAOF1iLxJLp6SmiC2Z0dPQwhvqsEjEwt3Wv4CGIXEI8fe5HeWFUUU0Zpc5hx0ZIUUxErZhIWlra4R0bHvrAHOLk5iTnJD+C+zmeX3ZwMD093c8YrKtsDmr1TY9+VNNGsc011/a/lTYZ/stPfxzL8/7mf/u6lYXVA0eDv//BV7/8+2/Ymmtjy73KmW7lHA1bYGEr09e+cu0f/v1rX/vFN75x/Udf+vZXYqNiQkLDvvvf/zkq3VzX9v1glutt8odm6TrQI0MknpF7Hc2zdD72fMem+iEknuG+TJcqjTX1jrGfHm9YAJ4LQRDYIEgBSoTH48H1v6CLOiEu1jG726N4CEHkEkIELunwd0FK5IopEbh7j4yMHLY9ECbj41MtLS35eZkwoxmxH2YBkIikntEuHe3tUcGukQy/d23fjGD7uYdruReZvPnTf3cjuf3TB9/653e+97XbP3xodg9bHVRKacpFtlI2jO0v/fPvv/sdnV//y/vf/7bZb/7l99+TiiTMIdb/+/WvYL0ZnhlGwUNuN73/bJP7EHwWKPiQvG6Sf5f9t//4DTIDH1lD7HSsNLYvf/Qw/jaHwQWCwAJXLpVK4fLW19c3NzePwgehsxprK00jSv2r+d7lbAQRBBEUEznjmIijoyPRCA/9mq2t7eVlOTTOJ2MKmTVJ/XTGII0dUR/gVGP6MPaud61le4nXL371E0Y3/Z8Nfvo7309tiv2dnMywNbZifkghG1bKoId448/6N/6X95/+HKLpUBbw4KEufJBUKPj3n/0Q45aSqowhK0Q78lMIeVgX6sPkZhbZOhAZ8W2z+9EHPwBwQJxVFSUhGWVoBjPcDItvV5RXMvofh0KIgcUvWIjrZ9CoWl6JwS0i/+oR/xo+ggiCCILIWUJEIp3b3dvV1tY+bIpPBSMP9zOG+tfW1kZ5oylFCZYFOuFML+0kjZmuZHOD64U5RW+RbuoWkfQLnRODA7A1vmJp+GCJpVhiY3uz4cFhegVOTl2hv7H/iNZJhRN++zvf2ZxqG8h28WQ4akV97NlsHdBLsi145NNhSyo3cW22tCswNEi+qx1xk+jc9Wyxhux45yoz+/qHIcmBzIEh8F/Y7M9yWJ7LESJvn8ca/MDEK7x3OaBxOrBpKqBpCkEEQQRB5CwhMjs7K5FKQYm8//77L76rr62uQdBhanyqjFroUWYDz4jxpTkaPHpHKaVXFCQkJiS9ZfWJrqEheD+KuQHl/NCBuP9AylRKhyC04u7qfNP0nq+XF3wEt78BWxzGJmp9Mg3M8vVd6sxgglU8273QwKPFyq3W0qnW5EHAp+Z5WqBTfDoeD+3FA640J7OsB34JHkMDLPBl5ubmXnDBClVKSG9H80fmvhH0tcBmIRRKywylZfpVQQQ+93K23ktyVSgm8kQU80plrM7MzIjF4qmpKUgP/+ijj2D9pF/zbCvlsUbyaWnxQ0FerTYBAyQHMwNskY3JedVFaR0NDX1t9dgid3mMqpwZVI51Kif7sEk6JuXS6kp7amvrywua8uKwuQFM1Ned4uxPd9aJ+RQipngwtcfRJl/fq93atdrco83mJ3/9gV+3Hfgy3m2qJBGYIkAVcNVL+DQ4LXBoYAj6YkAWPXV5hIY6VFJ5Gak6lKII2npQq4jSKoYS1DZLaZW8QoggjrwAWAgiVxUi4+Pjk5OTABEIr8pkMl1d3aKioqPu8BB25TB5vnkuxkmakFTq321vZqCDrY7uL4xjsyxslomJmYoJhmKyH1viY2Ptsz0VE40FytE+jNeJFwEV43dg3FastziiwMY0QiMIxv6rHnkHusYo9T5Mj2hdoG+apfNXpz9S+l1wfLTj0ybiEIFks0HXNx/9vKq+fIAxABB5qi8G4iOHIZLdjVULexfnInYYVR7UJoES3D6nKlIorxYi6nQ9qnnMFR2AdxRHEESuMET4fL5AIIA1h8NZWFgIDw//9NNPn8uR7a3tssqSpPx446QHEKQIZ7n99re/wLAF5USfUkBTjtMVkzRsYgBb4H//298aiSAvpUbxQ/yX+6uxwXrFQJ2SWYtB4TW2pLpGVJFcMgxCqU6+7Xb4pESlBsYpmoF0knm2tl7Sbf3YO8SkZ/hTNVUeDXAkeJD0o3ffTkzK4vO5MDZ3Z3ubuEiV9Hg8eyO8JPt63XUMD6dthHQthHTMPVsQRNSE1DmNnUEQedHg68epKVfKnQENAglaXC53aGhocHAQckABJRCzfPfdd4OCgp5CCfTXBAQEttAa7ZJMfKl2gVTSba/3vOztMUyOSbgHs8MHsxylhIutT+m88ztsoAvratzISR+qT8O4jUp2zQGnFptowfqyfdKN37r1RkyPq1ejJWACeGGZq/sw4V4E2+M9iz/ohd2i9OM+Di5SYN1hp5qpyNEy2/BjbY8PdNxJ7oHD7EGYBfbxlCeqq9zf2ggg+9+z9AjqWQnvXQl+Hj4IoCCIIIigwOpZBlaHh4eBHUwmkyAILDAOBbIwQJgUFhZ+8MEHFAoFvBiCJpDDury0XNNR4RZHItNxdRA+5P6R89s3PngPU0AwRYZtCLGVCWx3drA4C2uqxdrq+9LCMEmnUlCHTTdhS90TFQFf/c9ftkw1NvZzMIi7A8+LUEHEwarg4R3fj/zpNn/4WEcvRoOYNpGQIdD7Cx8UxLa/bW6lYR6iYRF4w8jvprbV2KQQLmldvtxQU2nl4vWJDSWkWxbetwr4eAFBEETUJIgqfHPkkCv1T/LskUiJvG5KBNgBeZ+wADsgBxSGwMAGMXkPrMfGxkCh+Pv7e3t7FxcXE2EIFm8oKiMMJmEmxAKZRrKr0v/KV39gZa4vhmgItogpF3BtMtuDLdKwvTFMRsdk1I7CIK33funp7ZtVUnTLzs02y+x+yHXowfXvtKfQXXSiP/0r6R3j2EfXNYON0+/DeBlVtNVBN/4W6J2QQZJB+MM7hqGaVkEAkXvmgXcsKL/9i8ZHDx7p+ac5lXKiaGvhfcvH4gMpEZjgQv32jyCC0t7VSnsHDUIQhBjJBhyBDVigDxWCl52dnbAB8gTCrrAdGBjo6+sLa3c3D+MUvKnjY/YDb1JYpEd+ntoueaaWJFc3kjPJOiTQrTo7KCnKw8fTiWShbXbz93numhxG7+KSLDw63ooU8VeLt9xazGFcDHTiwrRmul73SFmGNwwdr2t5kur1AnpI4Sznt0x+DXOIBA04Gsc//FQ/SNsm9IF18H0ryn2zgPvmAZo2Id//8RtRtJXQriVVxPQ54Q8UE3l2fhwEkUMLoLEzJ3BqXnBLGRiAyUfpQA3AByzEMDagCWzA0qFa2tvbYU3wBQ4G7oAquWX8V8oQdKDY+1Pt77lrGEQ7+IbkHsZQ6AxmfVG6sCUe8kGwxT5svLq9tnBrZ3+Ex/EOSqiqqH/z1s/IdJXcgAlE8jRz83NMQrQ+uOX2V7NHwSynAIb1LQejD60+iRpxM4x5eEs/SMsmVMsmBCACYuS+ReBdc/87pr6aFkHf/cmvEzjK58LiqJ0oJqImR5ASQUpELSUCKgNcGAIih+wgCALSAxbAB7Em+AJrYAos/h4B1hV4ijqFQbpHeviAog/TweMBzv19yOCAHLaFRRlzmMscaBcMNjIZ+OytkNLGYjJdvQNhEmhrTwv/Pjt4chW530nL99NxrsCB7KFjlWRbqeFcY3TT0OG2XpRV8X3LrEc3dYM/RxBLCng0d83I94x97puRf/izt+1TW8Kpy+pzBEEEQQQFVk+gQR6j9OgIGT79uSoOAgQBRhCYIKY1fpIjh3qE0CawcNjcD7TeDWI5B9IcNDwtwgp8DmUITOcBKSdwTtjT3dmaEf+wttg/u6hKODU+OsKDsC3sD88K9e6xgWffmRbfryyqZjGHCvLLNNwttVws7xtE6DvE3zH0sSm/e1PLHwgC6gN3ZCwpeEzEMlDDPEDD1O+eie8dI+/bjzx++qebMQNbCCKHaSOPW8hlnagZBVZft8AqoUSgO4aQIQRHWOzh3NLSIQ4Hwq5Ak0MBQqDk0LvJSyvUjrkR1O9oGG2fmVP9JERgAgGASENzB9nfSDKawmzzfl/HS9Mu9uYDc+IwcqG7X6+9TZWeg6ctZ5gDF8DjDFu5xd8zDTKGh2g6xd+1tr9jba1lFUqwg1irfBmIiZDvmfjdNfa5beh118T33353PY65C2ERNTmClAhSIkiJnKUSgRgHoUQOg6mQNvLNb32L9Ic3fv+v3/vrnbv5FRVM9jAcAOwAmkBrhw3CwWEPsW/p3gjmOhlG2Dr7ZR1CRC6Xs1isiYlxH78QDetEmFG5INXC1MbWNbaTEl9GHGZTZOjVZ3Ff7w5zkEWn0UGe8Dgsa8+YB9bh9sGlBq5J96xc9ezhZTA4L1AIghAQASVyFyBi5H3LwPOWgdfvruvEDmwjiCAloiYcUWD1xAR5cYd/PwOXIbAQXbyQZnb9vma9iTaWFYNlRq+FeERc//PNP/zWjRzMEYylFhRq3r8H8VUCIgAgD5KnS6uRWYj3HaPgBckMAYiVlRXVKFtWcEyGIyVNwouuLXFvLre7bxXlEorn1PcP000b7kanRrY2doAQgk+H+G5TXYWmTay5d4ZzRLWRe6qxW8pDUoyWdZiGRcChDFG5MxTo4r1n4n/XGIfIbQPPdx9YRTM21ZQhKE9E/ZaGAqsosKpWYHWAOXiYGwJQ6Ozt/enXv4blxmHJIThHUiOw1HAsJ1roaa/7xi/6TB9E+Pn29FIJpwbav5m5q22+rWVQAim6pasXnwwNFgisgnNEYzAeWQUUlsTurxRVFTp3N/olRZlqu1dSewcjywOqqmu4bB58NHwoi8Xs7Wp56BjxwJLiHtvoElVv4Ztt7J5s4ByvYxtxDyIgFoGHHIGYyH2zQA3cncEhcsfQ+0/attH9GwgiSImoz0fkzpxYjLzglsJksRiqfDOQAxDI+N7Pfr4R7oulhDbYGP5/X/1KqYmuIi6Q4WKDJYdiBXHm7/yxjzmk6vDFl6FB+h8/MjQL8yCnDkaW8lwSup0C0nJy89q6+3oGuXVplMZIh+mxlJXZ/KxEq65Gv6HOAEeSsaFPWXVVPTwKMzEti0of7OqhBoVGQBzkoXO8oUuSV0KbR2yTTWAB7DFyS9Z3iNK0euzRAEcex0fAwTH1x6OqRt4f3rXS9UuJ6FtBEEEQQRA5MRrUN9kLIDLM4Q2xOJD6wRpiFVdW3fvh97DMKCw98u6vf2n/7lu//863f/jfvz4d4L4XTR4iWdi7e/bR+ghfBuIYzo52DmHVHnGtcVUTUeX8iFKef+YgiVIkKnDmFwVgPVH9Zd4bSyX8gZiMBAt6G6W91mew3UfX0oUSnrFS6SMuJ/dm+QXb6Tgl0wEKb13X9Uxs90po94xvtQsuMfFKN/ZIeUSK1bGN1LTCo6qHeSK4R2NGvmPkAx00P/rlu0Hts6Gdzx9rh5LNULLZC5oJSjY7AXReABEubxQ4whpmi8Ti7//kx1gMGYsPwtKjSB++i+Un4EDJigYZQiOZv/Orn7E4nMO0ETaL+e6nhrHV07GVgqiykehyfkzFaFAe0yqidY2Ri/GrJ8oCxdNZ89OZzK7Aokx7+Wxee61vd6N/aZZ1U205BtM4M7IxWlxmoH1gIf8TfRfX6HqflE7PxDbP+DbHsApTrwwTj1QDl3g9+0gCH1AOOQI+zm1jvJf3V3++FTu0F6J21wyKiZzJvUf9k6CxM589EvmxE/XaPUaTPzHN5Y4AR6gDA3/51jcgmIqlhXO8HI3efnMbgBIbiMVSsJTwsBvvO/n4gctDODIQ8ijOyzbxyY+vmQR8HJbg/CG/9MH65iZMMcfrLaG3kUtyHa7furciTIJnYjWWu/S3kHub3AvzQrADmUIMHEn2dPe5ZxlsH1Lqm9rtldThldzuldjuHFFl5pNp5JGKuzmOMRAZ0bYL1bEL1bYNf2ANye+qPhoT8nVNO13/tHCqXB1fhphMBEFE/faPAqsosKpWYJXDH+OMCkZHJ/3DIou0PwVHZsTbAZ5BBYsk2AtXJXEUiK36fPi2JzngECJ4anxXu6Z1eELt1JMQCSse9k/vpySWY0oJtjmFMQrmy7w1nXNIQXl3bTO9nO74+lrqmTtj2BK2IcIETVh//Fs3rdxiG3ySOiEaAsUzucMnucM5strSLwc8GlPPNENnECNRunZRgBJdu0ht2zCIjOBdNtZB//AP/5g0fABcIABxVAlqlwa1S8I7YHYiNCkRGoD3WbtA7swZuTP8ieGR0eGRMSqD+av/52tYcUqGzn0CIi02Rng8VQWRkE/ec/P1g/jrYUIauDMf3dJJa12MLsd9GaJElHDJGTSb0Jo92Qi2OaucZWCM+Fs6lp8ak/UdYv58x/auVXxucQW2P6tYncTYBWUhNvYxnRAE8YhrgQIQ8U5s907scI2us/TPMfXONPZKN3JNNnSK03eIhgIQ0VFB5K5FwA09l9989CB+aDe0c54oBE2eVCVErCSqez68UxrZI43okoR1opnN1K05SIkgJaKeEhmb5AumB1j88RnJr9/9YNTdGsuOyXmo0WhjgKVFKMGdAYgUJH/03W+Ex8QCRIhnVsI4G8hJ+/b3f6RrGx5f85kYiSwbCczo80zpzcgvxhQS5eoExivyJdnYhlYbuMZb+ReY+5fSe5uxHbFynoX1x2lb+LnHt7nFNLjFNLrHNuMoAT2S2O4WjXfQmPtmm3qrxIhbgoGKIyBJtGzCYCAvdNn87t17timNsf3rkVRZeC9eInuWIqlLkT2wIYvAt2UxtKVo6lJsnyyZvpRMX06iyWJ6ZShjVU2PBkEEQUQtiLBGpzkjAgabzxwe5UxMf/3//AesIAFLCcOSQnGCxFOwovj7//bdt69fH+WPwgNve2k4QoAj/FHO+5p28dUQExk9FCMxFXxK7iDERy0o1WuAic0ZTNSdQba1DK4GRkDRds7alY9im2JM2FwQaG0Z1qQiyGOIuMe2gCoBJeIWAxAptPDLMfdViRG3ZHBqcCViC0FWGEoTfPORxy/fu5M9hcXS16Jpq7H9azH96zGq7Zj+lWj6Sgx9Nb5/NWlgPW1wNZmxksteK+FuFA2v57DWEEQQRFCeiLpy9LCuvOCW0j081csZpzJH6JzxEeGCoaNb9CfvQWQEFyCAkqzo7//jf35kabMkWx4aZg8MMvsZAzR6P40+IBCMfajllFg/86Q7Ax5NWBHHP5XqndbrHQEzAyxga4LedC89rxwNY//75pR7pn7YwSwm52O9MbfMQz0T2j3imgEZkGPmEQdiBNbN4NG4xdTZBBZZ+uea+2YRECGUiI5tOD6i1yr4ez/9Ta4QSxzcThjcUhViA18nMrcSmFspQ5sZrK183lbJyE756Gbl6Gb12Fbt2Gb16DaCCIIIgshZQqRjRNI1PNnJnuwYnqayBVOryv/0ta/vRPqCHmkz14fISGFllWR+aVQwOTohHGDxBofYHA5/YGiYPzaua+GdUCeMKvusd4aIjJAzab6pXY5R7aVlJTBnIrcy/I+3HLySOz3i20ydwnCySNv0jW1cEzpBerjHtahECnCkySMO1s0QGXGJqrWl4BAxA4/GK93QLfkhKVbfHtyZSEh4/+kf3s+dwZKGdlXI2H6qJA/t5HJ3S0f3agR7NeOw3mmc3G2Z2muZ2q2f2Kkf30EQQRBBEDlTiAiWGRML1NGFLp60eXi2lTffPrb4X/7T//HDr/zjbz+6MTW/JhBKhji8kUlJP3+GJRAy+VNMNpfN5fMEE7aOzpEVE0/2zhDbYUXDfqld/hlUE7+Kjq4melWUZWi9KurRYupXvMhvtLB1JsV0EsFUohCxVThAtW5yjqyxpRSqIJJl6pVm4Jzw0CFGnxT7wT3LP9zQLZzFktl7SUM7T5VEwMrQTg53v1qw3zi53zwFZa9FuNc2vd8p3G+d3m2HtXAfQQRBBEHkLCFSxN3qmtxgiNe7J1bz2OvFrJVmwUaLcL9zcmVSrugdm+/miWl88eDYLJ0/wxid7RkRdQ6O9A8LBlgc9rj4w/sWqc3zRLLZk4WS3R+Q2eeT2ufk6qdj6OiV1I3HTWNbvJK6DEmRbo4m3im9eIa7qkfmsHeG2ADvximi2jog34qcB4FVfGYAkCGOsbcMPP7Xm38qW8RS2HvJrN1kFqzxjSTWbgJzN51zkMPdzeLtF/P36VLlwJyiW6Ront5vnTnoEh90ivDSI1b0iA4QRBBEEETOEiIpnINMnrJnerNveiN3eDWDs1sxut00sds4usacWaVPLlWy5hqH53v4kj7+bB9f0sCZLWGI6oeEDP7U0MRcVj1V2yoouVES9URHLxEZIaf3+max/ezvaNnG+KV047CAHtykDlJMa5jtu05x3T5JHfASL3i2O54kQhDENbrRIbTcipxrDqkinmlGrkmQb2bunfl3X/r7knkslaNIHT5QFUUS+yBl+KBy/KBq8qBDdFA/dVAq2K+f2mctKsblivHlA7r0gDq7z5hT0iQHdMnB4JyCLlUgiCCIIIicJUTSOHhrzOYrmwQb5dy1NNZuOldRzN/LYW9U8TfAu6kckjbyl6t5qxXDS80cKTAlj7mcy1or4W83cySN45vmlERDx+jkhtknORJewg/MHnRLHaiMNjDzL/bP7PcDpqT3+WfSXRKoOeR7hj4lvhk071SqTxrVO7nLMx73aMCRgSG84MvYBRVDSNUE8kRUMsTEPfWb338jIKuqaBogokwZVqZxFOk8RfmEom5yv25K2SFW4OBYVjRNK5nSg5ElpWjtQLatkKwp+bIDgAh7QcFeVHCXFKL1z1nvnHox1WylL3kYegLeyxrw2rXn5ps9ddprT70+Nkft2QFLxJ7XNe1d9b0UaVxomQfZrPVM1mYq5yCFowCIZLC3ing7RcyFEu5aBkeRPbiczZTnDS7lDy6CHEjhYnms9fxBWcWEwiyqQM86KLVZSgRZgSBeEXke4cUW3sk92fY3jAN0HeIe2QcZOwbpWgd9bBJaHvnojrGnk2+0oxfFwinQwj3RA7p1o2ESgAbnyFqn8Gorcj5kmkHaO4zrhVnOPtZx/eD23SkMa5xWpnKVxWOKyomDivEDmlTJnD/oFIPPohhYOJhc2ZeuK4SrSsGyQryulG8rV3cUC1vKEZlCuKaYXVdMr8BL5M6oexM6J8Ki6RFft+kRDyELAgRu7xnDu6lcXPCDQkkb3k/hKLOHN1PZ+1nsjXT2Lr4T/jW8n87FDwCUpHEweJk3jQXVMz+6Z55UJ4qrE1Fisvk1HtxaP1qxR3u+d4KXJrPCg1rg3JFt255hWxD2sCTanGzzSUu6TVOqTaybZrD1+2Z+Ba7RDU4RNRANARmC56p6psG8RJCuekPP/WfvfMjbx1gLigHpXqdIUSJQMsFDkR6MryjH5ErBygFHpuTLlcAI6dre/Nq2dBMTrx1INxRrOwqpfGt+C4SJEtZL2wr5DoIIgshjCxwrKVCymVrJZk9CJEOFj8drnjIdFyn4GmcHIEb1X2LnZ+/iPQ4xZAuw3GnsA30rC9/inASfgUoyrTygt8TPyUoj3EW7u8SnMdOpNsW+JskmI8jIUOfjAPt7NSn2JbHWQY5ace5aWsYkl+hGGLxLCivHO2V8six983Rso37y64+cgmMGdrEeiXJYpuRIN5lT86y5nW6JcmRRCR3Si5uKafkeV7QsXN6ZWlHMbx4srG4trm7PyTcXt5Qbu8qVzb3ZheU52Rq8XN7GNnZRTARBBEHk881YHbfw1LoU5AkODgIuLywquGBl85h+WF5Tsk1/ZSBABNaZwWb5kZadBV6NWThEKpNsCsItKI4aaUGG1cn22aEmIU7aUa4PjIzMHMJrSGGVzlG1VoFFH2k6fvOHb2ia2vVL1gXLGHNmjTO3O7GKccRy/qRobHJmamF1YgUbl8gkCzLp0urolHhsenZhbVs0vzI9Oy+SzInEs9Klla195erW/ox0XiydX5CtAEG29jEUWD3213x8B0aP0VTVeRQTUVnhfGrDs3UxZxyzji5glnkAQfrKyD3FvrgeKfVrzXFrynKuTrUrT7CuirMFfFQm2lUl2qUGGoQ660S7aRsZGcAEi1o2kf/jX3/705//2jU4emoLE8gx9syKaF4+Lpqdksok8h3hwqpwdm5CKBZJFkRzstnFVaFIKpIuCMXSiWl85+S0eGZWKpmTimZFQpFQJpevrW3OLSxK56VzC3MrK2ubeyhPBCkRpESOEwXPtu0Lgwg4NbZpHV1Z9v2VwA5/gAisQYbgEMl0rkm2q4i3Ko+3rUiwqUiwrU6yi/V+FOqiE+upe+fTj+8/MgmNiRXJtzYxbEa2NSpemhRK+aLFuUU5YGJ2bkEytzgzOz8rnZ8WzgAjpHNSsVQimhXPiEViyaxQNDM9Mw1FKJ4BiMACD9CC9fzCwvwivFcqXZhbWFqQr64gJYKUCOriVfdOclhXLgwi4NHkiTDdT97kNYZRS/x6gCMlvl2F3m057o0ZTo8hkgAQwTlSneQQ6qwd7qIb56P//e/+T3yGZwU2t7whXVoTzS1NieenZhekC0vi+SWhaHYGVxiz00IhIGNiegrYIcKXGbFYPDMzo9oWTUxMwDawQyKVwFooFMIa9kskklmJBIACT9VaWFpEEEEQQRC5vBDJ5GNRjNVHN9+oS3fpA4KU+gFKACKtOe4NmaTqZLvyOJtyFUQqE2wLo8yDnbSiPPRNNf9y451/401J52TrczL53BJIj/kZsQT0Bq4+RKIpoXB6RigGLswIAROTk5MiEB8SCWzD5NLwErQIsX9qEo4VAlmmpvAN2AkLvIQFyLK4hCCCJiVCkxKd3Je5yJhI9hjmVsFtTbNjVAVQS/yppf6HEKnPIFWl4BBRyRDbqiS7FLIhBEQi3fQcDK5b3H+rrLZlUb4qnl+UQqx0bknloYimAQESMRBkahpiHmLABKAB1gQ7QHrAemxsDNYEUASqBbbhMOAIrlVUOoVACTg1kvk5pESQEkFK5PIqkaxRzLuGnxOgzagKhGgIEISASEuOK0CkOsWu4m9KpCbJDvplwlx0oIQ6aZnc/V1JVePiytq0WArggNAGhEfBhRmfnJicnpoRzQAvAAqwjIyMDA8Pc7lcgAWsgSDwwC3YM65a+Hw+bMMxcCQBGlgTC6BECk7NHJrZTN36c05eMEo2e22TzdS8Ox17GEzzoXv3bX5jGPTOHEKkOduVcGcqYq3AnYF+mYwQY4BIuKtuhJtemPOD3/z4m3PLm5LFZYiLjvD5Q2zWlHB6YmoSoMAbGeGPjPB4PA6HA3SANTw/GJ5xMTQ0BA/rBILANjxADzaAKUAQginEwTD9GlAGAAR8IdwcWJASOfZHRF28n6skT9nr2By1L2Tau7q3JnUqX+4kphOQWRyiN9wQ1lfq11dKBiUCEKlPd6xOsq2Is4JoCPgyEFKN8XwY6aYb6az5w//xFX9K2MaeYnZBNj0j5o7wmGwWf3SUxx/hcrhcDge4ALwAauDPx4Hn5TGZwBEABzxvnKAJbMPG4ULAhaAJkAUABCgBpoB4AT2CIKLO73h+XjBSIkiJHE8cGGv7u7smAZbvt2c60cp86RX+bXnuzZnOjemk2hTbvHDzcGfNEIc7773xnXfe/GlQeNjS+sH6zsHsHPTpQgx1Bhcgo3weTg8OUACIALAgCAIbxALUIBZiJ4EPeHl4GLEH3kuoEgIlsAZtgiCCIIJiIsc346dqyTk5t8+tizCsJp2HVSxiLtltdx8Z/PtPfuBl9UkuRSfR4wHZ+mPjm7/59N2fW1sZhiVn9vGmtmHis21sYXlDsiiDCCpEMATjE6OCsZFRPiAE2jxBEGI55AUBEUKPwNN8CXbA8iRN4F8EeghVQnAEFthGEEEQQRC53BDBR98cFIwqamawpgWsdxPrXcHi6gYT6/oL2we7+DOzGDarwGZ3MekGNrt2IJFvzMshGrI6LZqdmJjmjwn4Y6O8EVw1EO2fUBwER4hoCEGTQzFyuJPgCPEvwt8h9sCaEDWwRhBRkyDInfkszQrFRM6vNhxVHWE0cDYfKx9XVE4qG6eUzUKsU4r1zGP8NWx6HRuTKWCo/qT8QLSqlKzDKNttGB0nnpdNiiRjk9Ojo4KRMQim4mFUIvxB+CkEQQjdccgRYicBETiYkC3EnkMl8qRfQ1AJKRE1OXJOAhbFRFBM5LiReFxlJkxQwjnIHoFZPxSNQkWLUNE0ddAsVNDnFKPLMOgWG5fhM4/BxB/i1V3R8pZUtg7j6CZnxILJqfGJSVAi4M5ACIOAyKEvcyg9DoXJoV9DhFdBa8D6kCCEBiGWw1ArsAlBBEEEuTOX253hwpxjwBEcJUVjStAjjdMHLUIoik6RkrmgFMiVU3Jseg2bWIZ5xg5mV3YkK5vzyyugRCZmROMgRsYEHB4eVSXa/2Gfy6EGOdwPmDjs5T0MmjzZa0PIE1gId4borEEQQRBBELnUEFGzgl6Sw85JsV/Mt0PTI76knY9N+CDOj6YCuNCpAF7yR734tyOIvMDm52QcFBNBMZET66CLR4P6n3hO7UT9C3iZI5ESeRnrwXuREjlBY77STeUlK8qL336lLYMg8pJ1A0EEQeQEFjiqtiGIIHfmWZQ8ZRMUE0ExkRexBkEEQQRBRK278ZVuKi8pWZE789SYUvXteU7VBgVWUWBVLWypX1Nf7ZHn1E4u5kuhmMhL2hnFRE7QmK90U3nJioKUCFIiR9UBdSHyZPuB7aPednjYUfOJEAccxf7PfcpRn/H4uQ3XjpBz+PlRQRZQ3wIvro0vrsnqf8o5HHlcEzimBZ1ZMzmWBo+/O4LIOVSCM/sV0bW9jAUQRF7GeupICgQR1NRfcwsgiCCIPCXqXvMa/5K/N3r7sxZAEHnJWqGuO/NUTOXYUAqaY/VcA5mX7eRXOuSMemdesjodSwM0AO+z7psr3VResqKg3hnUO/OyvTNIiYAFEERQ2vshStSH8jlVG5RshpLNTpCfon59fVVHnlM7uZivczp35iiH/cL2HwWRwwu4doSb8ZJX+OyPgtyZEzTmK91UzrVBXmnLIIicFCsn9UtQTATFRI7nLILISdvhyx//qpQIceVPcgQpkeNbyKG9rnRTQUrkyLgg9iLn+uVb+zmdAUEExUROAK9zbf9ncvIrjVfkzpwCc0iJnLIBX+mmciawQL0zp2hv5/QWpESQEjklyM6VBac++ZXG64uVCNjknCjwkqdFEEEQQRC5LBY4FiKXkyMIIggil6UJnVp9PPnG11uJvKSJzsk4F5Ns9uLxK4RlUO/MCRrzOdWGl6yjl+HtV9oy6iiRlzHyORkHQQQpkRPA62Vq8MW895zaycVcPILIC+yMlMgZN9Qr3VTOtUFeacsgiCCIfG4+EdRUztUCX8Au3pe35zkRFrkzyJ05Y5X08nX9Zc5wTu3kZS5J/fcepUQu+f4je2f+loB75AC8IzJ0D7/v5xLJVEnuzxaUbHbKBnylm4r6jeoUR15py1xyWBw98drzJ2o+PP7UEIEzHNYBFBM5JSxeS9F+CjSo/xYEkYsn0fkpEeK7PO6+RUpE/WagzpFXuqmo8wVPfcyVtszFt/8z+UQEERQTOWOVdOr2fyZvRBA5Ey6c6CQIIggiCCKXxQInarqX52AEEQSRy9KEkBIBC1weNKh/JecKERRYPa/2eaVF+5nA4jUOOavfei/JkQgiSImcF+nOFRavMUTOz27ndO85k2SzY7N1URfvGTfUc6oN51d9L+zMyDIvMPU5GQdBBCmRMwbchfHiuR90Tu3k1X6ps/r0czIOggiCCILIa2UBpESenVXkKZt8lgb7OI/t2vNzatUM6h7ricF5jkraJT7iWAyf1W3kyfOc0y3lPC71gs+JLIMggiCi1l0RNRUUWD0Fnc+p2hx7H33xbfixGnjh4zLwzm+U9n6Kn/zibylne5Gv5Gzn1E5eyXc58w89J+MgiKCYiFra58wr9Dmd8JzayTld7QWf9pyMgyCCIIIg8lpZ4OIFLIIIgshr1YTO6WZ7wZLhnD7unIyDIIIggiDyWlkAKRHUO6NWhT6nW8o53QAv8rTIMggiCCIIImpZAHXxngLN50RY5M4gd+alGu0pqvK5vuWc2sm5XvOFnfycjIMggiCCIPJaWQC5M8idUatCn9Mt5cJuief3QcgyCCIIIggialkAxUROAeJzIixyZ5A781KN9hRV+Vzfck7t5Fyv+cJOfk7GQRBBEEEQea0sgNwZ5M6oVaHP6ZZyYbfE8/sgZBkEEQQRBBG1LIBiIqcA8TkRFrkzyJ15qUZ7iqp8rm85p3Zyrtd8YSc/J+MgiCCIIIi8VhZA7gxyZ9Sq0Od0S7mwW+L5fRCyDIIIggiCiFoWQDGRU4D4nAiL3BnkzrxUoz1FVT7Xt5xTOznXa76wk5+TcRBEEEQQRF4rCyB3BrkzalXoc7qlXNgt8fw+CFkGQQRBBEFELQugmMgpQHxOhEXuDHJnXqrRnqIqn+tbzqmdnOs1X9jJz8k4CCLnBZGjLIv2v3ILXFijvWwfhCBC/CJX5jGar7ypoAt4gQUuW/O+mOtBEEEQuYa4cIYWuJh2e6k+BUEEQQRB5CwtcKma98VcDIIIgshZNqEzvKVf0VNdTLu9VJ+CIHJJIYLHaTxR8756FrhUzftiLgZB5PJCBHHkKmL0YtrtpfoUBJFLDRHEkSvHkUvVvC/mYhBELjtELqYePLaCp+dhhbjIz738n/VsOzk2Feryf6mzukIEEQSRz1JLz6k2nFVlfYXnQRB5gfHPqdoci+lrz45mUe158lIx7Ji0T8zzD88tnzsJftbnlKdscumSzV5Jgzmn2vBKvsvZfiiCCILI1RuAd7ZtQM2zIYgcZSgEEQSRqwSRo0TaVdmvJrCu1mEIIggiCCJHeHVHeJUvCayrBQh1rhZBBEHk0kHkJVvp5X+7Oi3zCh2DIIIggiByoUrkqQj5FYIFiomc4sc6p1Aa6p05pmPp8kuJl7zCU9TFy/wWpESQEkFKBCmRl5ppDUEEQeTSQQR+kpe81V/yt19mWXGKa0MQQRBBEEFKBCmRl7IAgshlhMhzxcgpbpJn+JZTRMjUST0+wyt8VadCSgRB5JJC5CmOvKoWcvi5CCKod+YUlfAU1UadT0G9M8fP9q6OHS/4mFPUBqREnqrrF/yTXYaPO0W1UeeyEUQQRM7LA1en/p35McidQe7MZXFnjhqYfIX2P1WZkBJBSgQpEaJRXNBUAFcIFi+41Cc5giCCIIIggiDyfM/rxbz7LBarxsQwZ+5cXPwJkTuD3BnkzpyGFOqIEaREkBJBSgQpkdPwBSmRY/sOLl4uvapPRBBBEEEQOb4jCbkzyJ1B7sxpSIHcmRek4SEl8jI5iuqIpmMtrI4r/RpO1Px69M7At0DuzLFVXJ128nocg9yZC3VnLnmlebY2HAtyde4Gl/xbq3N5yJ1B7sxFuzNg8WebnzqV9dUegyBylP0RRBBEXgFEnuLIq6WDmp+OIIIgomZVefIw5M6ciztzil/iMrwFQQRB5BT1EEHkMUSeNARsH/UohcPDjnr63lPnueovj4qJfPa9jrLUE4/1vepGOOL6rx0RW/3secav6Re/sC94nIXVqHvHVmB1GvKxNHj8QyOIPLfGH/sbHDlLI4LI62+B86YJgshrUYcQRI5WE8dV8deiArxSMXWchZESeaU/j7r3EAQRBJFXV1GvGkSeiicdxbjDw45ypU4Rl7o8b0GBVRRYPUVtRIFV1Dvz2cgRBBEEEQQRQh88aYdjJQWCCIIIGoB3vAVQstmrSTY7BdRf7VuQEkFK5BQ1ELkzSIkgJXL8fRilvSMlgpTI8e0EaglSIkiJICWCYiJqwUL9poJG8T5Wqk8kffxtz/M7IE/RCK/6W5A7g9wZ5M4cT17kziB3Brkzx7cT5M6cqJ2gSYkOzYWUCFIiSIkcT1ikRE5E2DNx0I7FtDoTYh3rj6uTNYryRI5vIS+4pRz7G6jzQ55JlXq1J0EQQRBB7oxaKEG9M+qHnI+9T75a6l3kpyN3BrkzyJ05nrBIiSAlgpTI8e0EBVZP1E6QEkGB1acqzBk/0PsixeQZfhZyZ5A7c4rqhNwZ5M4gd+Z4mYbcmRPJtFOQ6Nm3HKv11AnqH9szgHpnjq/9J/o5kRJBSuREFebxHfiZdN5TnARBBJ+A4NmU+zMx5UWeBEEEQeQU9Q25M8idQe7M8YIOuTMX786oIv1PD1B6Opb5TJfJs9d57GPknvVonnOSa087T8+RTk/tOjZHTR1X6hRQf7VvQUoEKZFT1MBzUiIIIsff3E7xa533WxBEEEROUccQRJA7g9yZ44mP3JlX4s48JUaeew1PuhlHXeSTHs1zj3nSsTjyJE94NM+/EuTOqH6wzx4lQRjk2B4ydbrZTnFzu2xvQRBBEHkyxIEgcuSNF0EEuTOnwPf5uTNIiRwvkk/xg53rWxBEEEROUcHOFSKHHHmRFFKJhBdfOaGpX3CMOikahBg5spIgdwa5MydS7EflU6L9p7DAi9s/cUIEkauhSpASeXklcoomhN5yaIFT6KDL8xY0AA/HHIIIgsglIdrlQYP6V4IggiDyIrWofu/MJWmEr8dlqN+AL8ORCCIIIggiz38Ixivk0WVAg/rXgCCCIIIgcokgon7TvTxHIoggiJwMIk+lMLzC2/Xr9NGXhwinuBIEEQSRE0MEceSs+HWKFnsJ34IggiByGohcwqp88Zd03slmF/+NTveJCCIIIggip8xmQhAhoIMggiCCIIIgckoLIIigqQCOrzroZnuiMQGncweu+ruQEjljJXLUFAFoP7LAsxa46vhASuRclAhqKsgCp7DAlaYJUiJIiTwzFe9RE+2i/edvgatIEwQRBBEEkUtngauFEgQRBJFL14RO4Q68Zm9BEDk+5n/ZbHSGUwG8ZrUZfZ0LtsBlaxrqXA9SIqdUIniOzfl7yOgjviAWUKetXtpjEERODxHEkS9ICz+/r3lpuXCiC0MQeSmInMjWV/FglGyGks2OrbcIIggiKO39lFE8RFiUbPZSyWbH4vn1OAC1E6REjq3JSIkgJYKUCFIip7QAUiKnUSJHPV4T7UcWOIUFjr3JX4kDkBI5mRI5RUVBb0EWONYCVwIWR10kggiCCP6YRVQuiQWuIk0QRBBEEEEunQWuFkoQRBBELl0TuiSi4BVeBoLIS0V6X4n51B878worFvroL4IFXkn9f8kPRUrk+UoEzPpFqLLoO14SC7xkM361b0cQORIiiCOXpIG9xpfxahv/WX06gsiLIHJWVr6650EZqyhj9djaiyCCIIIyVk8ZxUOERRmrL8pYPZa+X5ADUDtBSuTYqn5mSgTz/AMqyALIAieywLHt80ocgCCC2Ics8OotcCVgcTZp7yeiLDoYWQBZ4KQWuIo0OZkSOalF0PHIAsgCp7DA1UIJgsirl7KnqGToLa+3BRBEULNEFkAWOKUFrhY+zriL9/W+M6Bvhyxwrha4iuw4vOaTuTPE287VmujkyAJfHAtcaXa8FERej2/+5LdAKVVH9t55eh4a5/X73V/yG6Fqc0p35iXtfjnfjmoDgsgpaiaqNieDCHpiJLIAssCZW+AU5LqEb1E3JnLm5kMnRBZAFji0wCVEg/qXhCByfg9aRWdGFjixBdRvupfnSASRE//M6P6JLHDeFrg8gFDnShBEEESQBS6dBdRpupfnGASRS1eBzvsuh85/mS1wedCg/pU8DRE8l+waalfIAsgCF2oB9VvsJTzyORBBHEEYRRa4GAtcQiKc4pKeD5FTnOhKvwVlDaFks1NUYFRtnp9sdgpTvgZvQbUBQeQU1RhVGwQRNFHz8bOco3byArgg4yCIIIggiBxvAQSRYzUaiomg586g586cEiVIiSAlgpTI8Y0HtROkRJASOb6dPKapauKMY+31RTsAQQRB5Ng6//8DSTUlj0mPbr8AAAAASUVORK5CYII=" alt="" />

题意

题解:

DP,我们可以分析一下,从上面走的,必然是从(1,2)走到(n-1,m),下面走的,必然是从(2,1)走到(n,m-1)位置

我们可以跑一法dp,从(1,2)走到(n-1,m)的总类数,从(2,1)走到(n,m-1)的种类数

但是很显然,我们把相交的情况也考虑进去了,相交的情况,其实可以转化一下,就变成从(1,2)走到(n,m-1),从(2,1)走到(n-1,m)的种类数相乘法

因为不管怎么走,这样子必然会有一个交点,就把所有相交的情况都囊括进去了,然后乱搞就好了

代码:

//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define test freopen("test.txt","r",stdin)
#define maxn 200001
#define mod 1000000007
#define eps 1e-9
int Num;
char CH[];
//const int inf=0x7fffffff; //нчоч╢С
const int inf=0x3f3f3f3f;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline void P(int x)
{
Num=;if(!x){putchar('');puts("");return;}
while(x>)CH[++Num]=x%,x/=;
while(Num)putchar(CH[Num--]+);
puts("");
}
//************************************************************************************** int n,m;
char s[][];
ll dp[][];
ll solve(int x,int y,int xx,int yy)
{
if(s[x][y]==)
return ;
memset(dp,,sizeof(dp));
dp[x][y]=;
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
if(s[i][j]=='')
continue;
dp[i][j]+=dp[i-][j]+dp[i][j-];
dp[i][j]%=mod;
}
}
return dp[xx][yy];
}
int main()
{
//test;
n=read(),m=read();
for(int i=;i<=n;i++)
scanf("%s",s[i]+);
ll tmp=solve(,,n-,m)*solve(,,n,m-)-solve(,,n,m-)*solve(,,n-,m);
printf("%d\n",(tmp%mod+mod)%mod);
}

【弱省胡策】Round #0 Flower Dance DP的更多相关文章

  1. 【弱省胡策】Round #5 Count

    [弱省胡策]Round #5 Count 太神仙了. \(DP\)做法 设\(f_{n,m,d,k}\)表示\(n*m\)的矩阵,填入第\(k\)个颜色,并且第\(k\)个颜色最少的一列上有\(d\) ...

  2. luoguP3769 [CH弱省胡策R2]TATT

    luoguP3769 [CH弱省胡策R2]TATT PS:做这题前先切掉 P4148简单题,对于本人这样的juruo更助于理解,当然dalao就当练练手吧 题目大意: 现在有n个四维空间中的点,请求出 ...

  3. 弱省胡策 Magic

    弱省胡策 Magic 求\(n\)个点\(n\)的条边的简单联通图的个数. 毒瘤,还要写高精. 我们枚举环的大小\(k\),\(\displaystyle ans=\sum_{k=3}^nC_n^k ...

  4. 【ContestHunter】【弱省胡策】【Round0】(A)&【Round1】(B)

    DP+容斥原理or补集转化?/KD-Tree 唔……突然发现最早打的两场(打的最烂的两场)没有写记录……(太烂所以不忍记录了吗... 还是把搞出来了的两道题记录一下吧= =勉强算弥补一下缺憾…… Ro ...

  5. 【Contest Hunter【弱省胡策】Round #0-Flower Dance】组合数学+DP

    题目链接: http://ch.ezoj.tk/contest/%E3%80%90%E5%BC%B1%E7%9C%81%E8%83%A1%E7%AD%96%E3%80%91Round%20%230/F ...

  6. 【弱省胡策】Round #5 Construct 解题报告

    这个题是传说中的 Hack 狂魔 qmqmqm 出的构造题.当然要神. 这个题的本质实际上就是构造一个图,然后使得任意两点间都有长度为 $k$ 的路径相连,然后对于任意的 $i < k$,都存在 ...

  7. 【弱省胡策】Round #5 Handle 解题报告

    这个题是我出的 sb 题. 首先,我们可以得到: $$A_i = \sum_{j=i}^{n}{j\choose i}(-1)^{i+j}B_j$$ 我们先假设是对的,然后我们把这个关系带进来,有: ...

  8. 【弱省胡策】Round #7 Rectangle 解题报告

    orz PoPoQQQ 的神题. 我的想法是:给每一个高度都维护一个 $01$ 序列,大概就是维护一个 $Map[i][j]$ 的矩阵,然后 $Map[i][j]$ 表示第 $i$ 根柱子的高度是否 ...

  9. 【弱省胡策】Round #6 String 解题报告

    感觉这个题好神啊. 首先我们只管 $a = b$ 的情况,那么我们自然就可以把这个串对 $a$ 取模,然后用 KMP 求出能弄出几个其他的 B 串. 具体就是把串先倍长,然后倒过来,然后求 $Next ...

随机推荐

  1. C# Selenium with PhantomJSDriver get image width and height (获取图片的长和高)

    //get image width and height var image=driver.FindElement(By.ClassName("it-Header_authorImage&q ...

  2. 安装完ODTwithODAC112012,出现ORA-12560:TNS:协议适配器错误

    参考:http://blog.csdn.net/tan_yixiu/article/details/6762357 操作系统:windows2008 Enterprise 64位 开发工具:VS201 ...

  3. vue单选,多选,多选的内容显示在页面可删除

    vue做单选只能选一个 <template> <div class="list"> <!-- 多行多列单选 --> <span>只能 ...

  4. 使用xbee连接地面站和飞控

    Zigbee是一种短距离.低功耗的近距离无线组网通讯技术,主要适用于自动控制和远程控制领域,可以嵌入各种设备. DIGI的ZigBee产品XBee小型但却是一个功能完善的ZigBee收发器(即接收器/ ...

  5. 当while read line 遇到 ssh

    问题:while read line 中使用ssh只能读取一行? #!/bin/sh while read line do echo $line ssh root@$line "echo 1 ...

  6. 一致性hash理解

    在做memcached分布式集群时往往要用到一致性hash算法来调节缓存数据的分布. 通常的hash算法是以服务器数量N作为模数,使用key%N的值来获得最终位置,显然当服务器数量发生变化即N发生变化 ...

  7. caffe多个gpu数据合并到一起

    当多GPU树形拓扑构建完毕,数据预缓冲到GPU显存,开始进入多GPU并行训练.Caffe的Solver提供了两个用于多GPU训练的回调函数:on_start()和on_gradient_ready() ...

  8. C++的一大误区——深入解释直接初始化与复制初始化的区别

      转自:http://blog.csdn.net/ljianhui/article/details/9245661 不久前,在博客上发表了一篇文章——提高程序运行效率的10个简单方法,对于其中最后一 ...

  9. Mariadb 10.2中的json使用及应用场景思考

    -- 创建示例表DROP TABLE IF EXISTS `t_base_user`;CREATE TABLE `t_base_user`  (  `USER_ID` char(36) CHARACT ...

  10. [笔记] 几个前端bug的解决方案

    jQuery UI下被拖动的元素上飘 症状出现在几乎所有浏览器里.使用 1.10.x 的draggable,在滚动栏下移(即非处于页面顶部)的时候拖动draggable的元素,它会向上跳一段距离.解决 ...