DNA repair
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 5877   Accepted: 2760

Description

Biologists finally invent techniques of repairing DNA that contains segments causing kinds of inherited diseases. For the sake of simplicity, a DNA is represented as a string containing characters 'A', 'G' , 'C' and 'T'. The repairing techniques are simply
to change some characters to eliminate all segments causing diseases. For example, we can repair a DNA "AAGCAG" to "AGGCAC" to eliminate the initial causing disease segments "AAG", "AGC" and "CAG" by changing two characters. Note that the repaired DNA can
still contain only characters 'A', 'G', 'C' and 'T'.

You are to help the biologists to repair a DNA by changing least number of characters.

Input

The input consists of multiple test cases. Each test case starts with a line containing one integers N (1 ≤ N ≤ 50), which is the number of DNA segments causing inherited diseases.

The following N lines gives N non-empty strings of length not greater than 20 containing only characters in "AGCT", which are the DNA segments causing inherited disease.

The last line of the test case is a non-empty string of length not greater than 1000 containing only characters in "AGCT", which is the DNA to be repaired.

The last test case is followed by a line containing one zeros.

Output

For each test case, print a line containing the test case number( beginning with 1) followed by the

number of characters which need to be changed. If it's impossible to repair the given DNA, print -1.

Sample Input

2
AAA
AAG
AAAG
2
A
TG
TGAATG
4
A
G
C
T
AGT
0

Sample Output

Case 1: 1
Case 2: 4
Case 3: -1

Source

题意:

给定N个模式串(1 ≤ N ≤ 50) 最大长度为20,一个主串(长最大为1000),同意涉及的字符为4个 {'A','T','G','C'},求最少改动几个字符 使主串不包括全部模式串。

思路:

对模式串建立AC自己主动机。依据AC自己主动机来dp。

dp[i][j]表示到主串第i个字符时到达自己主动机上第j个节点时改动最少字符数。

枚举下一个字符为AGCT中的一个来转移,注意转移的时候不能包括模式串中的节点,于是要用一个数组来记录该节点结尾时是否包括了单词。

代码:

#include <cstdio>
#include <cstring>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std; const int INF=0x3f3f3f3f;
const int maxn=10010;
const int bsz=26;
typedef long long ll;
char txt[maxn],cc[]="AGCT";
bool vis[maxn];
int ans; struct Trie
{
bool have[maxn]; // 该节点结尾是否包括单词
int ch[maxn][bsz],val[maxn],sz,cnt[maxn]; // ch存Trie val-节点相应的单词 cnt-节点结尾单词个数
int f[maxn],last[maxn];//f-失配指针 last-后缀链接
int newnode()
{
val[sz]=0; cnt[sz]=0; have[sz]=0;
memset(ch[sz],-1,sizeof ch[sz]);
return sz++;
}
void init()
{
sz=0;
newnode();
}
int idx(char c) // 取c的标号 详细看字符为什么
{
return c-'A';
}
void Insert(char *st,int id)
{
int u=0,n=strlen(st),c,i;
for(i=0;i<n;i++)
{
c=idx(st[i]);
if(ch[u][c]==-1)
ch[u][c]=newnode();
u=ch[u][c];
}
val[u]=id;
cnt[u]++;
have[u]=1;
}
void build()
{
int u=0,v,i;
queue<int> q;
f[0]=0;
for(i=0;i<bsz;i++)
{
v=ch[u][i];
if(v==-1) ch[u][i]=0;
else
{
f[v]=0;
q.push(v);
}
}
while(!q.empty())
{
u=q.front();
q.pop();
last[u]=val[f[u]]? f[u]:last[f[u]];
for(i=0;i<bsz;i++)
{
v=ch[u][i];
if(v==-1) ch[u][i]=ch[f[u]][i]; // 将NULL变为有意义 沿着父亲失配指针走第一个有意义的节点
else
{
f[v]=ch[f[u]][i];
have[v]|=have[f[v]];
q.push(v);
}
}
}
}
bool Find(char *st,int m,int id)
{
int n=strlen(st),i,u=0,c,p,flag=0;
// vis-可标记哪些单词出现过 相同的单词仅仅标记一个
for(i=0;i<n;i++)
{
c=idx(st[i]);
u=ch[u][c];
p=val[u]? u:last[u];
while(p)
{
vis[val[p]]=true;
//if(val[p]){ ans+=cnt[p]; cnt[p]=0; }
flag=1;
p=last[p];
}
}
if(!flag) return false;
//能够将出现的单词标号输出
// for(i=1;i<=m;i++)
// if(vis[i])
// {
// vis[i]=0;
// printf(" %d",i);
// }
// puts("");
return true;
}
} ac;
int dp[1005][1005]; void solve()
{
int i,j,k,len=strlen(txt+1);
int id,next;
memset(dp,0x3f,sizeof(dp));
dp[0][0]=0;
for(i=0;i<len;i++)
{
for(j=0;j<ac.sz;j++)
{
if(dp[i][j]>=INF) continue ;
for(k=0;k<4;k++)
{
id=ac.idx(cc[k]);
next=ac.ch[j][id];
if(ac.have[next]) continue ;
if(cc[k]==txt[i+1])
{
dp[i+1][next]=min(dp[i+1][next],dp[i][j]);
}
else
{
dp[i+1][next]=min(dp[i+1][next],dp[i][j]+1);
}
}
}
}
ans=INF;
for(j=0;j<ac.sz;j++) ans=min(ans,dp[len][j]);
if(ans>=INF) ans=-1;
}
int main()
{
int i,j,n,ca=0;
while(~scanf("%d",&n))
{
if(n==0) break ;
ac.init();
for(i=1;i<=n;i++)
{
scanf("%s",txt);
ac.Insert(txt,i);
}
ac.build();
scanf("%s",txt+1);
solve();
printf("Case %d: %d\n",++ca,ans);
}
return 0;
}

poj 3691 DNA repair(AC自己主动机+dp)的更多相关文章

  1. POJ 2778 DNA Sequence (AC自己主动机 + dp)

    DNA Sequence 题意:DNA的序列由ACTG四个字母组成,如今给定m个不可行的序列.问随机构成的长度为n的序列中.有多少种序列是可行的(仅仅要包括一个不可行序列便不可行).个数非常大.对10 ...

  2. Hdu 2457 DNA repair (ac自己主动机+dp)

    题目大意: 改动文本串的上的字符,使之不出现上面出现的串.问最少改动多少个. 思路分析: dp[i][j]表示如今 i 个字符改变成了字典树上的 j 节点. 然后顺着自己主动机一直转移方程. 注意合法 ...

  3. POJ 3691 &amp; HDU 2457 DNA repair (AC自己主动机,DP)

    http://poj.org/problem?id=3691 http://acm.hdu.edu.cn/showproblem.php?pid=2457 DNA repair Time Limit: ...

  4. HDU 2457/POJ 3691 DNA repair AC自动机+DP

    DNA repair Problem Description   Biologists finally invent techniques of repairing DNA that contains ...

  5. POJ 3691 DNA repair(AC自动机+DP)

    题目链接 能AC还是很开心的...此题没有POJ2778那么难,那个题还需要矩阵乘法,两个题有点相似的. 做题之前,把2778代码重新看了一下,回忆一下当时做题的思路,回忆AC自动机是干嘛的... 状 ...

  6. poj 1699 Best Sequence(AC自己主动机+如压力DP)

    id=1699" target="_blank" style="">题目链接:poj 1699 Best Sequence 题目大意:给定N个D ...

  7. POJ 1625 Censored! (AC自己主动机 + 高精度 + DP)

    题目链接:Censored! 解析:AC自己主动机 + 高精度 + 简单DP. 字符有可能会超过128.用map映射一下就可以. 中间的数太大.得上高精度. 用矩阵高速幂会超时,简单的DP就能解决时间 ...

  8. Hdu 3341 Lost&#39;s revenge (ac+自己主动机dp+hash)

    标题效果: 举个很多种DNA弦,每个字符串值值至1.最后,一个长字符串.要安排你最后一次另一个字符串,使其没事子值和最大. IDEAS: 首先easy我们的想法是想搜索的!管她3721..直接一个字符 ...

  9. HDU - 2825 Wireless Password(AC自己主动机+DP)

    Description Liyuan lives in a old apartment. One day, he suddenly found that there was a wireless ne ...

随机推荐

  1. SharePoint Server 2013 Offline Installation (without Internet)

    转自:http://social.msdn.microsoft.com/Forums/sharepoint/zh-CN/08f90e0f-1f52-4eba-9f6e-4dd635ffaadc/sha ...

  2. XmlnsDefinitionAttribute Is Pretty Nifty

    When we want to declaratively use our custom controls or reference the types we defined in XAML, we ...

  3. openfire Hazelcast插件集群配置

    原文:http://blog.csdn.net/frankcheng5143/article/details/48708899 注意虽然hazelcast 官方已经有了3.5.2版本,但是openfi ...

  4. javascript函数中的匿名函数

    一般写函数,我们会这样调用: function add(x, y) { return x + y; } alert(add(2, 3)); 或者这样: var add = function(x, y) ...

  5. 每天进步一点点——关于SSD写入放大问题

    转载请说明出处:http://blog.csdn.net/cywosp/article/details/29812433 1. 关于SSD的写入放大     之前在SSD(Solid State Dr ...

  6. AlphaGo:用机器学习技术古老的围棋游戏掌握AlphaGo: Mastering the ancient game of Go with Machine Learning

    AlphaGo: Mastering the ancient game of Go with Machine Learning Posted by David Silver and Demis Has ...

  7. iOS:判断引导页首次出现、版本更新

    判断引导页首次出现方式: //选择根控制器 +(void)chooseRootViewController{ //初始化Window窗口 [AppDelegate Delegate].window = ...

  8. powerdesigner 16.5 破解步骤

    假设你的PowerDesigner已经安装完成.(PowerDesigner下载地址:http://pan.baidu.com/s/1mgqjmpa) 1. 从网上下载PowerDesigner165 ...

  9. 如何在mysql数据库中保存emoji特殊字符

    MySQL在5.5.3版本之后增加了这个utf8mb4的编码,mb4就是most bytes 4的意思,专门用来兼容四字节的unicode.其实,utf8mb4是utf8的超集,理论上原来使用utf8 ...

  10. Vue.js前后端同构方案之准备篇——代码优化

    收录待用,修改转载已取得腾讯云授权 导语 目前Vue.js的火爆不亚于当初的React,本人对写代码有洁癖,代码也是艺术.此篇是准备篇,工欲善其事,必先利其器.我们先在代码层面进行优化,对我们完成整个 ...