拉姆齐(Ramsey)定理是要解决以下的问题:要找这样一个最小的数n,使得n个人中必定有k个人相识或l个人互不相识

我们所知道的结论是这样的

6 个人中至少存在3人相互认识或者相互不认识。

该定理等价于证明这6个顶点的完全图的边,用红、蓝二色任意着色,必然至少存在一个红色边三角形,或蓝色边三角形

HDU6152

给出 n 个人之间的关系,如果其中有三个人互相认识或者互相不认识,则输出 Bad Team! ,否则输出 Great Team!

当人数大于等于 6 时其结果一定是 Bad Team!

而对于 n < 6 的情况,实际上需要求图的最大团点的个数是否大于 3

 #include<cstdio>
#include<cstring>
int n;
int a[][];
int main()
{
int T,t;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
memset(a,,sizeof(a));
for(int i=;i<n;i++)
for(int j=i+;j<=n;j++)
{
scanf("%d",&t);
if(t&&n<) a[i][j]=a[j][i]=;
}
if(n>=)
{
puts("Bad Team!");
continue;
}
int f=;
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int k=j+;k<=n;k++)
if(a[i][j]&&a[i][k]&&a[j][k])
{
f=;
break;
}
if(f) puts("Bad Team!");
else puts("Great Team!");
}
return ;
}

图论&数学:拉姆齐(Ramsey)定理的更多相关文章

  1. HDU-6125-Friend-Graph-2017CCPC网络赛(图论,拉姆齐定理-组合数学)

    Friend-Graph Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  2. 图论&数学:矩阵树定理

    运用矩阵树定理进行生成树计数 给定一个n个点m条边的无向图,问生成树有多少种可能 直接套用矩阵树定理计算即可 矩阵树定理的描述如下: 首先读入无向图的邻接矩阵,u-v G[u][v]++ G[v][u ...

  3. 鸽巢原理及其扩展——Ramsey定理

    第一部分:鸽巢原理 咕咕咕!!! 然鹅大家还是最熟悉我→ a数组:but 我也很重要 $:我好像也出现不少次 以上纯属灌水 文章简叙:鸽巢原理对初赛时的问题求解以及复赛的数论题目都有启发意义.直接的初 ...

  4. 2017CCPC 网络选拔赛1003 Ramsey定理

    Ramsey定理 任意6个人中,一定有三个人互为朋友,或者互相不是朋友. 证明 这里我就不证明了.下面链接有证明 鸽巢原理 Ramsey定理 AC代码 #include <stdio.h> ...

  5. 数学:拓展Lucas定理

    拓展Lucas定理解决大组合数取模并且模数为任意数的情况 大概的思路是把模数用唯一分解定理拆开之后然后去做 然后要解决的一个子问题是求模质数的k次方 将分母部分转化成逆元再去做就好了 这里贴一份别人的 ...

  6. 图论:Prufer编码-Cayley定理

    BZOJ1430:运用Cayley定理解决树的形态统计问题 由Prufer编码可以引申出来一个定理:Cayley 内容是不同的n结点标号的树的数量为n^(n-2) 换一种说法就是一棵无根树,当知道结点 ...

  7. codeforces 1260C. Infinite Fence (数学or裴蜀定理)

    只需要验证小间隔在大间隔之间有没有连续的k个 设小间隔为a,大间隔为b,那么a在b之间出现的次数在\(\lfloor \frac{b}{a}\rfloor\)或者\(\lfloor \frac{b}{ ...

  8. 模板 - 数学 - 数论 - 扩展Euler定理

    费马(Fermat)小定理 当 \(p\) 为质数,则 \(a^{p-1}\equiv 1 \mod p\) 反之,费马小定理的逆定理不成立,这样的数叫做伪质数,最小的伪质数是341. 欧拉(Eule ...

  9. [数学][欧拉降幂定理]Exponial

    Exponial 题目 http://exam.upc.edu.cn/problem.php?cid=1512&pid=4 欧拉降幂定理:当b>phi(p)时,有a^b%p = a^(b ...

随机推荐

  1. Centos 关闭图形界面

    查看/etc/inittab如下: # systemd uses 'targets' instead of runlevels. # by default, there are two main ta ...

  2. Java JDK安装及环境配置

    转载:https://jingyan.baidu.com/article/6dad5075d1dc40a123e36ea3.html 环境变量配置: 系统变量→新建 JAVA_HOME 变量 . 变量 ...

  3. Python:集合操作总结

    集合是一组无序排列的不重复元素集 [注]:集合的最大作用是对一个序列进行去重操作 一.集合的分类 在Python中集合分为两类,为可变集合(set)和不可变集合(frozenset).对于可变集合(s ...

  4. Alpha冲刺总结报告

    一.项目预期计划 允许粗糙的美工设计.由于是毫无经验的人生第一次,必定在开发过程中会遇到许多的问题,因而我们必定会花费不少时间在学习和debug上. 实现除了他山之石和规则系统以外的所有内容. 在日历 ...

  5. 划分树---hdu4417---区间查找(不)大于h的个数

    http://acm.hdu.edu.cn/showproblem.php?pid=4417 Super Mario Time Limit: 2000/1000 MS (Java/Others)    ...

  6. Codeforces Round #287 (Div. 2) E. Breaking Good 最短路

    题目链接: http://codeforces.com/problemset/problem/507/E E. Breaking Good time limit per test2 secondsme ...

  7. lintcode-391-数飞机

    391-数飞机 给出飞机的起飞和降落时间的列表,用 interval 序列表示. 请计算出天上同时最多有多少架飞机? 注意事项 如果多架飞机降落和起飞在同一时刻,我们认为降落有优先权. 样例 对于每架 ...

  8. 多线程PV

    #include <STDIO.H> #include <windows.h> //#include "stdafx.h" #include <pro ...

  9. nginx & restart

    nginx & restart https://www.cyberciti.biz/faq/nginx-linux-restart/

  10. TTPPRC —— 商业分析模型

    欢迎讨论 : ) 前言1 TTPPRC,是一个为了更容易.透切地进行商业分析而整理出的分析模型.通过这个模型,可以让不具备专业商业知识的大众都能容易得出商业分析结果. 此文是读者阅读原文后,而整理的一 ...