[摸鱼]cdq分治 && 学习笔记
待我玩会游戏整理下思绪(分明是想摸鱼
cdq分治是一种用于降维和处理对不同子区间有贡献的离线分治算法
对于常见的操作查询题目而言,时间总是有序的,而cdq分治则是耗费\(O(logq)\)的代价使动态操作化为静态查询问题(the world!
考虑无修改的求逆序对问题
每个元素可定义为\((pos_i,val_i)\),求对每个\((pos_i,val_i)\)有多少个\((pos_j,val_j)\),满足\(pos_j<pos_i,val_j>val_i\)
cdq分治的过程就是令其中一维有序(pos),计算出贡献消除该维度的影响,后面对已遍历的元素只需得知\(val\)的关系即可
因此对于归并过程的merge中假设\([l,mid]\)和\([mid+1,r]\)的子区间已经统计完,保证了两个子区间分别有序,那只需再求左子区间对右子区间的贡献即可
比如左子区间中的下标\(p\)和右子区间中的下标\(q\)满足\(val_p>val_q\),那么可以得出\(val_{[p...mid]}>val_q\),左区间对于右区间中的\(q\)的贡献为\(mid-p+1\),统计完后继续维护大区间的有序并pushup即可
而对于有修改(既存在时间变量)的操作,我们需要维护左子区间的修改对右区间查询的影响(因为对于分治,左区间存在是右区间存在的前提),对于查询则需要标记时间的维度\(ansid\)
注意如果\(p\)和\(q\)优先越界的处理上的不同
以及区间查询时一分为二的做法
练手题 Luogu - P3374
题意:m次操作,单点更新,区间查询
我们把原数组的初始值当作插入修改来处理,时间复杂度\(O((m+n)log(m+n))\)
#include<bits/stdc++.h>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define print(a) printf("%lld",(ll)(a))
#define printbk(a) printf("%lld ",(ll)(a))
#define println(a) printf("%lld\n",(ll)(a))
using namespace std;
const int MAXN = 1.5e6+11;
typedef long long ll;
const ll MOD = 1e9+7;
const ll INF = 1ll<<60;
unsigned int SEED = 19260817;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
struct QUERY{
int pos,val,type;
bool operator < (const QUERY &rhs) const{
if(pos!=rhs.pos) return pos<rhs.pos;
return type<rhs.type;
}
}Q[MAXN],tmp[MAXN];
ll ans[MAXN];
void solve(int l,int r){
if(l==r)return;
int mid=l+r>>1;
solve(l,mid);
solve(mid+1,r);
int p=l,q=mid+1,cnt=0;
ll sum=0;
while(p<=mid&&q<=r){
if(Q[p]<Q[q]){
if(Q[p].type==1) sum+=Q[p].val;
tmp[++cnt]=Q[p++];
}else{
if(Q[q].type==2) ans[Q[q].val]-=sum;
if(Q[q].type==3) ans[Q[q].val]+=sum;
tmp[++cnt]=Q[q++];
}
}
while(p<=mid) tmp[++cnt]=Q[p++];
while(q<=r){
if(Q[q].type==2) ans[Q[q].val]-=sum;
if(Q[q].type==3) ans[Q[q].val]+=sum;
tmp[++cnt]=Q[q++];
}
rep(i,1,cnt) Q[i+l-1]=tmp[i];
}
int main(){
int m,n;
while(cin>>n>>m){
int cnt=0,ansid=0;
rep(i,1,n){
Q[++cnt].pos=i;
Q[cnt].val=read();
Q[cnt].type=1;
}
rep(i,1,m){
int op=read();
if(op==1){
Q[++cnt].pos=read();
Q[cnt].val=read();
Q[cnt].type=1;
}else{
int l=read();
int r=read();
Q[++cnt].pos=l-1;
Q[cnt].val=++ansid;
Q[cnt].type=2;
Q[++cnt].pos=r;
Q[cnt].val=ansid;
Q[cnt].type=3;
}
}
solve(1,cnt);
rep(i,1,ansid) println(ans[i]);
}
return 0;
}
[摸鱼]cdq分治 && 学习笔记的更多相关文章
- 初学cdq分治学习笔记(可能有第二次的学习笔记)
前言骚话 本人蒟蒻,一开始看到模板题就非常的懵逼,链接,学到后面就越来越清楚了. 吐槽,cdq,超短裙分治....(尴尬) 正片开始 思想 和普通的分治,还是分而治之,但是有一点不一样的是一般的分治在 ...
- CDQ分治学习笔记
数据结构中的一块内容:$CDQ$分治算法. $CDQ$显然是一个人的名字,陈丹琪(NOI2008金牌女选手) 这种离线分治算法被算法界称为"cdq分治" 我们知道,一个动态的问题一 ...
- CDQ分治学习笔记(三维偏序题解)
首先肯定是要膜拜CDQ大佬的. 题目背景 这是一道模板题 可以使用bitset,CDQ分治,K-DTree等方式解决. 题目描述 有 nn 个元素,第 ii 个元素有 a_iai.b_ibi.c_ ...
- 三维偏序[cdq分治学习笔记]
三维偏序 就是让第一维有序 然后归并+树状数组求两维 cdq+cdq不会 告辞 #include <bits/stdc++.h> // #define int long long #def ...
- CDQ分治学习思考
先挂上个大佬讲解,sunyutian1998学长给我推荐的mlystdcall大佬的[教程]简易CDQ分治教程&学习笔记 还有个B站小姐姐讲解的概念https://www.bilibili.c ...
- cdq分治学习
看了stdcall大佬的博客 传送门: http://www.cnblogs.com/mlystdcall/p/6219421.html 感觉cdq分治似乎很多时候都要用到归并的思想
- [Updating]点分治学习笔记
Upd \(2020/2/15\),又补了一题 LuoguP2664 树上游戏 \(2020/2/14\),补了一道例题 LuoguP3085 [USACO13OPEN]阴和阳Yin and Yang ...
- 点分治&&动态点分治学习笔记
突然发现网上关于点分和动态点分的教程好像很少……蒟蒻开篇blog记录一下吧……因为这是个大傻逼,可能有很多地方写错,欢迎在下面提出 参考文献:https://www.cnblogs.com/LadyL ...
- [日常摸鱼]poj1741Tree-点分治
还有两天就要去FJWC啦- 题意:一颗无根树,$k$为给定常数,求树上距离不超过$k$的点对的数量,多组数据,$n \leq 10^4$. 应该是点分治经典题~ 一般对于无根树我们都可以把它转变成有根 ...
随机推荐
- TFS(Visual Studio Team Services) git认证失败 authentication fails 的解决方案
问题描述 TFS 在visual studio中使用正常,可是git pull运行失败,提示 authentication fails. 初步判断原因为默认的 credential.helper 与 ...
- SSH2免密码登录OpenSSH
OpenSSH免密码登录SSH2http://blog.csdn.net/aquester/article/details/23836245 两个SSH2间免密码登录http://blog.csdn. ...
- Matlab神经网络
1. <MATLAB神经网络原理与实例精解> 2. B站:https://search.bilibili.com/all?keyword=matlab&from_source=na ...
- jquery插件中(function ( $, window, document, undefined )的作用
在jquery插件中我们经常看到以下这段代码 ;(function ( $, window, document, undefined ){ //函数体内具体代码 })(jQuery, window,d ...
- velocity的日志解决问题
问题描述:velocity使用时,添加了一个非自己想要的日志文件,因此在velocity的配置中需要添加logger. 解决: velocity.properties添加log配置: runtime. ...
- Replication--复制笔记1
1.快照复制和事务复制使用分发代理传递文件,而合并复制使用合并代理来传递文件2.快照代理在分发服务器上运行3.在创建快照是,根据复制的类型对发布表的加锁方式而不同 a)对应合并发布,快照代理不适 ...
- Centos故障01:Docker容器丢失
问题 一测试环境,配置及应用如下: [Centos ~]# rpm -q centos-release centos-release-7-6.1810.2.el7.centos.x86_64 应用: ...
- MVC MVC常见错误及解决办法
MVC常见错误及解决办法 问题1: 必须添加对程序集“EntityFramework, Version=5.0.0.0, Culture=neutral, PublicKeyToken=b77a5c5 ...
- 2018-12-20 第一章初识JAVA-上机
JAVA初体验之课后练习 一.请写出Java 程序执行过程与编译原理 答:①执行过程:创建.java文件——编译器(JDK环境里的javac.exe文件编译)——输出.class供计算机接受(只有cl ...
- coffee主题美化内容概要
1.具备自动生浮动标题目录(可隐藏) 2.页首目录概要 3.主标题有明显的标志背景颜色,二级标题缩进合适 4.一级.二级标题下图片缩进合适 5.博客签名 6.背景音乐列表 7.打赏 8.联系方式(QQ ...