【POJ】3233 Matrix Power Series
【算法】二分+矩阵快速幂
【题意】给定矩阵A和整数k,MOD,求A^0+A^1+A^2+...+A^k。
【题解】
定义题目要求的答案为f(n),即:
$$f_n=\sum_{i=0}^{n}A^i$$
当n为偶数时,可以拆成两半,后一半由前一半集体乘A(n/2)得到,即:
$$f_n=f_{\frac{n}{2}}(A^{\frac{n}{2}}+1)$$
当n为奇数时,直接递推:
$$f_n=f_{n-1}*A^n$$
复杂度O(n^3 log k)。
快速幂的单位矩阵是主对角线(左上到右下)全为1,其余全为0,不用memset就超时了,多用stdio.h。
#include<cstdio>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
const int maxn=;
int n,MOD,kind;
struct Mat{ll a[maxn][maxn];}A; Mat ch(Mat a,Mat b){
Mat tmp;
memset(tmp.a,,sizeof(tmp.a));
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
tmp.a[i][j]=(tmp.a[i][j]+a.a[i][k]*b.a[k][j])%MOD;
return tmp;
}
Mat pow(int k){
Mat tmp=A,ans;
memset(ans.a,,sizeof(ans.a));
for(int i=;i<=n;i++)ans.a[i][i]=;
//快速幂初值为1(单位矩阵)!!!
while(k>){
if(k&)ans=ch(ans,tmp);
tmp=ch(tmp,tmp);
k>>=;
}
return ans;
}
Mat plus(Mat a,Mat b){
Mat tmp;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)tmp.a[i][j]=(a.a[i][j]+b.a[i][j])%MOD;
return tmp;
}
Mat calc(int k){
Mat tmp;
if(k<=)return A;
if(k&){
tmp=plus(calc(k-),pow(k));
}
else{
Mat tmps=calc(k/);
tmp=plus(tmps,ch(tmps,pow(k/)));
}
return tmp;
}
int main(){
scanf("%d%d%d",&n,&kind,&MOD);
for(int i=;i<=n;i++)for(int j=;j<=n;j++)scanf("%lld",&A.a[i][j]);
Mat ans=calc(kind);
for(int i=;i<=n;i++){
for(int j=;j<=n;j++)printf("%lld ",ans.a[i][j]%MOD);
printf("\n");
}
return ;
}
还有一道题:HDU1588 Gauss Fibonacci
给定k,b,n,m,求:
$$ans=\sum_{i=0}^{n-1}Fib(k*i+b) \ \ mod \ \ m$$
定义A^i表示Fib(i)的斐波那契矩阵(见Fibonacci,左下角项),那么:
$$sum=A^b \times \sum_{i=0}^{n-1}(A^k)^i \ \ mod \ \ m$$
后面将$A^k$视为整体后,就是本题的套路了。
【POJ】3233 Matrix Power Series的更多相关文章
- POJ 3233 Matrix Power Series 【经典矩阵快速幂+二分】
任意门:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K To ...
- 矩阵十点【两】 poj 1575 Tr A poj 3233 Matrix Power Series
poj 1575 Tr A 主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575 题目大意:A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的 ...
- POJ 3233 Matrix Power Series(二分等比求和)
Matrix Power Series [题目链接]Matrix Power Series [题目类型]二分等比求和 &题解: 这题我原来用vector写的,总是超时,不知道为什么,之后就改用 ...
- POJ 3233 Matrix Power Series (矩阵乘法)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 11954 Accepted: ...
- [ACM] POJ 3233 Matrix Power Series (求矩阵A+A^2+A^3...+A^k,二分求和或者矩阵转化)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 15417 Accepted: ...
- Poj 3233 Matrix Power Series(矩阵乘法)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Description Given a n × n matrix A and ...
- 线性代数(矩阵乘法):POJ 3233 Matrix Power Series
Matrix Power Series Description Given a n × n matrix A and a positive integer k, find the sum S = ...
- POJ 3233 Matrix Power Series(矩阵快速幂)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 19338 Accepted: 8161 ...
- poj 3233 Matrix Power Series(矩阵二分,高速幂)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 15739 Accepted: ...
随机推荐
- .net 错误处理
第一步在页面中写OnError方法: protected override void OnError(EventArgs e) { Exception ex = Server.GetLastError ...
- TCP系列44—拥塞控制—7、SACK关闭的快速恢复
) return; delta = ssthresh - in_flight; prr_delivered += newly_acked_sacked; if (delta < 0 ...
- 1029 C语言文法定义
program à external_declaration | program external_declaration <源程序> -> <外部声明> | < ...
- B-2阶段组员分数分配
组名: 新蜂 组长: 武志远 组员: 宫成荣 谢孝淼 杨柳 李峤 项目名称: java俄罗斯方块 武 武 武 武 杨 宫 宫 杨 宫 谢 李 杨 李 谢 李 谢 李 谢 杨 宫 扬 谢 宫 李 武 评 ...
- pcap的安装与配置
1.打开网址:www.tcpdump.org/ 下载 libpcap-1.0.0.tar.gz (512.0KB) 软件包,通过命令 tar zxvf libpcap-1.0.0.tar.gz 解压文 ...
- static关键字的新用法
static关键字的新用法和总结: static这个关键字,也可以像“self”一样,代表“当前类”,用于访问一个类的“静态属性或静态方法”: 但, static,在应用中,更灵活,因此更常见! 因为 ...
- PHP对象类型转换
其他数据类型转换为对象类型 其他数据类型转换为对象类型,得到的结果是:内置标准类(stdclass)的一个对象! 语法形式为: $obj1 = (object) 其他类型数据: 数组转换为对象:数 ...
- solrCloud源码分析之CloudSolrClient
CloudSolrClient是solrj提供的客户端与solrCloud交互的类.该类的实例与zookeeper进行通信来确定solrCloud collections中的solr endpoint ...
- git 恢复单个文件
首先查看该文件的历史版本信息:git log Default@2x.png 记录下需要恢复的commit版本号:如 9aa51d89799716aa68cff3f30c26f8815408e926 恢 ...
- BZOJ3712 PA2014Fiolki(kruskal重构树)
对合并过程建树.然后只需要按照时间顺序考虑每个反应就行了,时间顺序根据lca的深度确定. #include<iostream> #include<cstdio> #includ ...