[NOIP2003]栈 题解(卡特兰数)
[NOIP2003]栈
Description
宁宁考虑的是这样一个问题:一个操作数序列,从1,2,一直到n(图示为1到3的情况),栈A的深度大于n。
现在可以进行两种操作:
1.将一个数,从操作数序列的头端移到栈的头端(对应数据结构栈的push操作)
2.将一个数,从栈的头端移到输出序列的尾端(对应数据结构栈的pop操作)
使用这两种操作,由一个操作数序列就可以得到一系列的输出序列;
你的程序将对给定的n,计算并输出由操作数序列1,2,…,n经过操作可能得到的输出序列的总数。
Solution
1.题目可将进栈记为0,出栈记为1,那么问题即为求由n个0和n个1组成的字符串数,条件是每个1出现前必须有一个对应的0出现;
2.那么可以推得方案数为总方案数减半,解与求01串的个数相同:n个0与n个1构成的序列方案数,使得任何一个前缀0的个数不少于1的个数;
做法是将0看做在坐标系中向右走一步,1看做向上走一步,则问题可化简为从原点到(n,n)所有路线中一直处于y=x之下(不越过直线y=x)的不同路径方案数,方案数即为对应n的卡特兰数;
3.因为没有要求取模,可以考虑使用高精度运算,输出n对应的卡特兰数即可;
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
int ans[100001]={},x=0;
void mul(int n){
for(int i=1;i<=ans[0];++i){
ans[i]=ans[i]*n+x;
x=ans[i]/10;
ans[i]%=10;
}
while(x>0){
ans[0]++;
ans[ans[0]]=x%10;
x/=10;
}
}
void div(int n){
int q=0;
for(int i=ans[0];i>=1;--i)
{
x=(ans[i]+q*10)%n;
ans[i]=(ans[i]+q*10)/n;
q=x;
}
while(ans[ans[0]]==0)ans[0]--;
}
int main(){
ans[0]=ans[1]=1;
int n;
scanf("%d",&n);
for(int i=n+2;i<=(n<<1);++i)mul(i);
for(int i=2;i<=n;++i) div(i);
for(int i=ans[0];i>0;--i)printf("%d",ans[i]);
printf("\n");
return 0;
}
卡特兰数基础知识部分可以参考我的题解:http://www.cnblogs.com/COLIN-LIGHTNING/p/8450053.html
[NOIP2003]栈 题解(卡特兰数)的更多相关文章
- AC日记——codevs 1086 栈 (卡特兰数)
题目描述 Description 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈). ...
- 浅谈卡特兰数(Catalan number)的原理和相关应用
一.卡特兰数(Catalan number) 1.定义 组合数学中一个常出现在各种计数问题中出现的数列(用c表示).以比利时的数学家欧仁·查理·卡特兰的名字来命名: 2.计算公式 (1)递推公式 c[ ...
- hdu 5673 Robot 卡特兰数+逆元
Robot Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Problem D ...
- 卡特兰数 BZOJ3907 网格 NOIP2003 栈
卡特兰数 卡特兰数2 卡特兰数:主要是求排列组合问题 1:括号化矩阵连乘,问多少种方案 2:走方格,不能过对角线,问多少种方案 3:凸边型,划分成三角形 4:1到n的序列进栈,有多少种出栈方案 NOI ...
- CH1102 火车进出栈问题(高精/卡特兰数)
描述 一列火车n节车厢,依次编号为1,2,3,-,n.每节车厢有两种运动方式,进栈与出栈,问n节车厢出栈的可能排列方式有多少种. 输入格式 一个数,n(n<=60000) 输出格式 一个数s表示 ...
- 【讲●解】火车进出栈类问题 & 卡特兰数应用
火车进出栈类问题详讲 & 卡特兰数应用 引题:火车进出栈问题 [题目大意] 给定 \(1\)~\(N\) 这\(N\)个整数和一个大小无限的栈,每个数都要进栈并出栈一次.如果进栈的顺序为 \( ...
- NOIP2003pj栈[卡特兰数]
题目背景 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈). 栈的重要性不言自明,任何 ...
- 出栈顺序 与 卡特兰数(Catalan)的关系
一,问题描述 给定一个以字符串形式表示的入栈序列,请求出一共有多少种可能的出栈顺序?如何输出所有可能的出栈序列? 比如入栈序列为:1 2 3 ,则出栈序列一共有五种,分别如下:1 2 3.1 3 2 ...
- 洛谷 p1044 栈 【Catalan(卡特兰数)】【经典题】
题目链接:https://www.luogu.org/problemnew/show/P1044 转载于:https://www.luogu.org/blog/QiXingZhi/solution-p ...
随机推荐
- PAT 甲级 1035 Password
https://pintia.cn/problem-sets/994805342720868352/problems/994805454989803520 To prepare for PAT, th ...
- 【Linux】- cat命令的源码历史
转自:Cat 命令的源码历史 以前我和我的一些亲戚争论过计算机科学的学位值不值得读.当时我正在上大学,并要决定是不是该主修计算机.我姨和我表姐觉得我不应该主修计算机.她们承认知道如何编程肯定是很有用且 ...
- python mysql查询结果乱码
在connect()方法中传入charset='utf8'参数即可. conn = MySQLdb.connect(host=get_config_values('mysql', 'host'), p ...
- linux设置时区和自动同步时间
1.设置时区 编辑 /etc/sysconfig/clock 修改 ZONE="Asia/Shanghai" 然后 cp /usr/share/zoneinfo/Asia/Sh ...
- hbase快速入门
hbase 是什么? Apache HBase is an open-source, distributed, versioned, non-relational database modeled a ...
- 矩阵快速幂模板(pascal)
洛谷P3390 题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格 ...
- 【Java并发编程】之二:线程中断
[Java并发编程]之二:线程中断 使用interrupt()中断线程 当一个线程运行时,另一个线程可以调用对应的Thread对象的interrupt()方法来中断它,该方法只是在目标线程中设置一 ...
- InnoDB事务日志(redo log 和 undo log)详解
数据库通常借助日志来实现事务,常见的有undo log.redo log,undo/redo log都能保证事务特性,undolog实现事务原子性,redolog实现事务的持久性. 为了最大程度避免数 ...
- 连接Mysql数据库
JDBC连接数据库 创建一个以JDBC连接数据库的程序,包含7个步骤: 1.加载JDBC驱动程序: 在连接数据库之前,首先要加载想要连接的数据库的驱动到JVM(Java虚拟机), 这通过java.la ...
- bzoj2621: [Usaco2012 Mar]Cows in a Skyscraper(状压DP)
第一眼是3^n*n的做法...然而并不可行T T 后来发现对于奶牛的一个状态i,最优情况下剩下那个可以装奶牛的电梯剩下的可用重量是一定的,于是我们设f[i]表示奶牛状态为i的最小电梯数,g[i]为奶牛 ...