ResNet笔记
先前的研究已经证明,拥有至少一个隐层的神经网络是一个通用的近似器,只要提高网络的深度,可以近似任何连续函数。因此,理想情况下,只要网络不过拟合,深度神经网络应该是越深越好。但是在实际情况中,在不断加神经网络的深度时,会出现一个 Degradation 的问题,即准确率会先上升然后达到饱和,再持续增加深度则会导致准确率下降。这并不是过拟合的问题,因为不光在测试集上误差增大,训练集本身误差也会增大。对此的解释为:当网络的层级很多时,随着前向传播的进行,输入数据的一些信息可能会被丢掉(激活函数、随机失活等),从而导致模型最后的表现能力很一般。
假设有一个比较浅的网络(Shallow Net)达到了饱和的准确率,那么后面再加上几个的全等映射层(Identity mapping),起码误差不会增加,即更深的网络不应该带来训练集上误差上升。而这里提到的使用全等映射直接将前一层输出传到后面的思想,就是 ResNet 的灵感来源。在ResNets中,作者通过shorcut connection操作,保证了网络的深度越深,模型的表现能力一定不会下降。
作者提出一个 Deep residual learning 框架来解决这种因为深度增加而导致性能下降问题。
假定某段神经网络的输入是 x,期望输出是 H(x),即 H(x) 是期望的复杂潜在映射,但学习难度大;如果我们直接把输入 x 传到输出作为初始结果,通过下图“shortcut connections”,那么此时我们需要学习的目标就是 F(x)=H(x)-x,于是 ResNet 相当于将学习目标改变了,不再是学习一个完整的输出,而是最优解H(X) 和全等映射 x 的差值,即残差
Shortcut 原意指捷径,在这里就表示越层连接,在 Highway Network 在设置了一条从 x 直接到 y 的通路,以 T(x, Wt) 作为 gate 来把握两者之间的权重;而 ResNet shortcut 没有权值,传递 x 后每个模块只学习残差F(x),且网络稳定易于学习,作者同时证明了随着网络深度的增加,性能将逐渐变好。可以推测,当网络层数够深时,优化 Residual Function:F(x)=H(x)−x,易于优化一个复杂的非线性映射 H(x)。
在 ResNet 的论文中,除了提出残差学习单元的两层残差学习单元,还有三层的残差学习单元。两层的残差学习单元中包含两个相同输出通道数(因为残差等于目标输出减去输入,即,因此输入、输出维度需保持一致)的3´3卷积;而3层的残差网络则使用了 Network In Network 和 Inception Net 中的1´1卷积,并且是在中间3´3的卷积前后都使用了1´1卷积,先降维再升维的操作,降低计算复杂度。另外,如果有输入、输出维度不同的情况,我们可以对 x 做一个线性映射变换,再连接到后面的层。
ResNet笔记的更多相关文章
- 残差网络ResNet笔记
发现博客园也可以支持Markdown,就把我之前写的博客搬过来了- 欢迎转载,请注明出处:http://www.cnblogs.com/alanma/p/6877166.html 下面是正文: Dee ...
- tensorflow学习笔记——ResNet
自2012年AlexNet提出以来,图像分类.目标检测等一系列领域都被卷积神经网络CNN统治着.接下来的时间里,人们不断设计新的深度学习网络模型来获得更好的训练效果.一般而言,许多网络结构的改进(例如 ...
- 吴恩达深度学习笔记(八) —— ResNets残差网络
(很好的博客:残差网络ResNet笔记) 主要内容: 一.深层神经网络的优点和缺陷 二.残差网络的引入 三.残差网络的可行性 四.identity block 和 convolutional bloc ...
- 图像分类丨ILSVRC历届冠军网络「从AlexNet到SENet」
前言 深度卷积网络极大地推进深度学习各领域的发展,ILSVRC作为最具影响力的竞赛功不可没,促使了许多经典工作.我梳理了ILSVRC分类任务的各届冠军和亚军网络,简单介绍了它们的核心思想.网络架构及其 ...
- 论文笔记:CNN经典结构1(AlexNet,ZFNet,OverFeat,VGG,GoogleNet,ResNet)
前言 本文主要介绍2012-2015年的一些经典CNN结构,从AlexNet,ZFNet,OverFeat到VGG,GoogleNetv1-v4,ResNetv1-v2. 在论文笔记:CNN经典结构2 ...
- ResNet学习笔记
ResNet学习笔记 前言 这篇文章实在看完很多博客之后写的,需要读者至少拥有一定的CNN知识,当然我也不知道需要读者有什么水平,所以可能对一些很入门的基本的术语进行部分的解释,也有可能很多复杂的术语 ...
- 学习笔记-ResNet网络
ResNet网络 ResNet原理和实现 总结 一.ResNet原理和实现 神经网络第一次出现在1998年,当时用5层的全连接网络LetNet实现了手写数字识别,现在这个模型已经是神经网络界的“hel ...
- 学习笔记TF033:实现ResNet
ResNet(Residual Neural Network),微软研究院 Kaiming He等4名华人提出.通过Residual Unit训练152层深神经网络,ILSVRC 2015比赛冠军,3 ...
- ResNet 论文研读笔记
Deep Residual Learning for Image Recognition 原文链接 摘要 深度神经网络很难去训练,本文提出了一个残差学习框架来简化那些非常深的网络的训练,该框架使得层能 ...
随机推荐
- C语言——常用标准输入输出函数 scanf(), printf(), gets(), puts(), getchar(), putchar(); 字符串拷贝函数 strcpy(), strncpy(), strchr(), strstr()函数用法特点
1 首先介绍几个常用到的转义符 (1) 换行符“\n”, ASCII值为10: (2) 回车符“\r”, ASCII值为13: (3) 水平制表符“\t”, ASCII值为 9 ...
- 【转】JavaScript操作SVG的一些知识
原文:http://blog.iderzheng.com/something-about-svg-with-javascript/ 前阵子学习了一下SVG(Scalable Vector Graphi ...
- 天天沉迷于皇上本宫的都是sb
天天沉迷于皇上.本宫.奴才.太后的都是sb,时不时还要被某王和某平民的爱情感动的落泪.这是病,要治,最有效的治疗方法是38度的夏天去搬砖. 拍这些电视的人真不傻,知道真sb多,这种电视剧才能爆款.
- JavaWeb总结(十五)
AJAX(Asynchronous JavaScript and XML(异步的 JavaScript 和 XML)) AJAX的作用是什么? 在无需重新加载整个网页的情况下,能够更新部分网页的技术 ...
- [Oracle]ORA-01499的处理
如果出现 ORA-01499,说明 table 和 index之间的相互参照出了错: http://iderror.com/errors/oracle/oracle-db/ora-00900-to-o ...
- zhengruioi 470 区间
区间 链接 题意:给定n个区间[li,ri].你可以选出任意一些区间,设选出的区间个数是s,[l,r]是这些区间的交,求min(s,r-l+1)的最大值. N≤3×105 分析:首先按照左端点排序,然 ...
- AFO预定
妈耶 数论题都不会 推不出式子 题解都看不懂 还是思维jiang化了 布星了 吃枣药丸 祝yyb进队 祝zsy进队 祝鸡贼进队
- Python Machine Learning: Scikit-Learn Tutorial
这是一篇翻译的博客,原文链接在这里.这是我看的为数不多的介绍scikit-learn简介而全面的文章,特别适合入门.我这里把这篇文章翻译一下,英语好的同学可以直接看原文. 大部分喜欢用Python来学 ...
- Unity依赖注入(笔记)
一.介绍 控制反转(Inversion of Control,简称IoC):整洁架构思想,不允许内部获知外部的存在,这就导致了我们必须在内层定义与外层交互的接口,通过依赖注入的方式将外层实现注入到内部 ...
- python自动化17-JS处理滚动条
前言 selenium并不是万能的,有时候页面上操作无法实现的,这时候就需要借助JS来完成了. 常见场景: 当页面上的元素超过一屏后,想操作屏幕下方的元素,是不能直接定位到,会报元素不可见的. 这时候 ...