早就听人提起过线段树,今天有题搞不出来,讨论上说要用一下线段树,看了下,本质上是空间划分索引,只不过是一维上面的,如果在二维则是四叉树,三维则是八叉树,如果可以动态调整那么跟R-Tree就很相似了,他们都可以对范围查询做出响应。参照书上写了一个,虽然不多,但是渣渣也写的很是费力

#include <iostream>
#include <cstdlib>
#include <vector> using namespace std; class SegmentTree {
private:
int *mem;
int capacity;
int storage_size;
private:
void init_level_update() {
int k = capacity - ;
while (--k >= ) {
int L = (k<<) + ;
int R = L + ;
mem[k]= min(mem[L], mem[R]);
}
} int query(int a, int b, int idx, int L, int R) {
if (b <= L || a >= R) return INT_MAX;
if (a <= L && R <= b) return mem[idx]; int ml = query(a, b, (idx<<) + , L, (L+R)/);
int mr = query(a, b, (idx<<) + , (L+R)/, R);
return min(ml, mr);
} void init_mem(int _capacity) {
if (_capacity <= ) {
capacity = ;
return;
}
int n = ;
while (n < _capacity) n<<=;
capacity = n;
storage_size = capacity * - ;
mem = new int[storage_size]; int k = ;
while (k < storage_size) mem[k++] = INT_MAX;
}
public:
SegmentTree(int _capacity) {
init_mem(_capacity);
}
SegmentTree(vector<int>::iterator begin, vector<int>::iterator end) {
capacity = end - begin;
init_mem(capacity); int k = capacity - ;
vector<int>::iterator iter = begin;
while (iter != end) mem[k++] = *iter++; init_level_update();
}
~SegmentTree() {
delete[] mem;
} // update value in original data index
void update(int idx, int val) {
if (idx >= capacity || idx < ) return;
int k = idx + capacity - ; // internal storage index
mem[k] = val;
while (k > ) {
k = (k - ) >> ;
int L = (k << ) + ;
int R = L + ;
mem[k] = min (mem[L], mem[R]);
}
} // retrive the min value in index range [a, b)
int query(int a, int b) {
return query(a, b, , , capacity);
} void print_mem(const char* msg) {
cout<<msg<<endl;
for (int i=; i<(capacity*-); i++) {
cout<<mem[i]<<" ";
}
cout<<endl;
}
}; void test(const char* msg, SegmentTree& seg_tree, int* data, int size) {
cout<<msg<<endl;
for (int i=; i<=size; i++) {
for (int j=i+; j<=size; j++) {
int tmin = seg_tree.query(i, j);
cout<<"min of ("<<i<<","<<j<<") = "<<tmin<<endl;
int amin = INT_MAX;
for (int k=i; k<j; k++) if (data[k] < amin) amin = data[k];
if (amin != tmin)
cout<<"fail"<<endl;
else
cout<<"ok"<<endl;
}
}
}
int main() {
int h[] = {, , , , , , };
int size= sizeof(h) / sizeof(int);
vector<int> hs(h, h + size); SegmentTree seg_tree(hs.begin(), hs.end());
test("Test construction with data :", seg_tree, h, size); SegmentTree init_empty_tree(size);
for (int i=; i<size; i++) init_empty_tree.update(i, h[i]);
test("Test construction without data", init_empty_tree, h, size); system("pause");
return ;
}

下面是一个带有返回最小值索引值的改进版本

class SegmentTree {
private:
int *mem;
int *idx;
int capacity;
int storage_size; private:
void init_level_update() {
int k = capacity - ;
while (--k >= ) {
int L = (k<<) + ;
int R = L + ;
if (mem[L] < mem[R]) {
mem[k] = mem[L];
idx[k] = idx[L];
} else {
mem[k] = mem[R];
idx[k] = idx[R];
}
}
} pair<int, int> query(int a, int b, int idx, int L, int R) {
if (b <= L || a >= R) return make_pair(INT_MAX, -);
if (a <= L && R <= b) return make_pair(mem[idx], this->idx[idx]); pair<int, int> ml = query(a, b, (idx<<) + , L, (L+R)/);
pair<int, int> mr = query(a, b, (idx<<) + , (L+R)/, R);
return ml.first < mr.first ? ml : mr;
} void init_mem(int _capacity) {
if (_capacity <= ) {
capacity = ;
return;
}
int n = ;
while (n < _capacity) n<<=;
capacity = n;
storage_size = capacity * - ;
mem = new int[storage_size];
idx = new int[storage_size]; int k = ;
while (k < storage_size) mem[k++] = INT_MAX;
k = capacity - ;
int i = ;
while (k < storage_size) idx[k++] = i++;
}
public:
SegmentTree(int _capacity) {
init_mem(_capacity);
}
SegmentTree(vector<int>::iterator begin, vector<int>::iterator end) {
capacity = end - begin;
init_mem(capacity); int k = capacity - ;
vector<int>::iterator iter = begin;
while (iter != end) mem[k++] = *iter++; init_level_update();
} ~SegmentTree() {
delete[] mem;
delete[] idx;
} // update value in original data index
void update(int index, int val) {
if (index >= capacity || idx < ) return;
int k = index + capacity - ; // internal storage index
mem[k] = val;
while (k > ) {
k = (k - ) >> ;
int L = (k << ) + ;
int R = L + ;
if (mem[L] < mem[R]) {
mem[k] = mem[L];
idx[k] = idx[L];
} else {
mem[k] = mem[R];
idx[k] = idx[R];
}
}
} // retrive the min value in index range [a, b)
pair<int, int> query(int a, int b) {
return query(a, b, , , capacity);
} void print_mem(const char* msg) {
cout<<msg<<endl;
for (int i=; i<(capacity*-); i++) {
cout<<mem[i]<<" ";
} for (int i=; i<capacity * - ; i++) {
cout<<idx[i]<<",";
}
cout<<endl;
}
};

参考:

  挑战程序设计竞赛第二版

Implementation:Segment Tree 线段树的更多相关文章

  1. HDU 4107 Gangster Segment Tree线段树

    这道题也有点新意,就是须要记录最小值段和最大值段,然后成段更新这个段,而不用没点去更新,达到提快速度的目的. 本题过的人非常少,由于大部分都超时了,我严格依照线段树的方法去写.一開始竟然也超时. 然后 ...

  2. SPOJ 11840. Sum of Squares with Segment Tree (线段树,区间更新)

    http://www.spoj.com/problems/SEGSQRSS/ SPOJ Problem Set (classical) 11840. Sum of Squares with Segme ...

  3. 【BZOJ-3165】Segment 李超线段树(标记永久化)

    3165: [Heoi2013]Segment Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 368  Solved: 148[Submit][Sta ...

  4. codeforces 242E - XOR on Segment (线段树 按位数建树)

    E. XOR on Segment time limit per test 4 seconds memory limit per test 256 megabytes input standard i ...

  5. Luogu P4097 [HEOI2013]Segment 李超线段树

    题目链接 \(Click\) \(Here\) 李超线段树的模板.但是因为我实在太\(Naive\)了,想象不到实现方法. 看代码就能懂的东西,放在这里用于复习. #include <bits/ ...

  6. BZOJ.3307.雨天的尾巴(dsu on tree/线段树合并)

    BZOJ 洛谷 \(dsu\ on\ tree\).(线段树合并的做法也挺显然不写了) 如果没写过\(dsu\)可以看这里. 对修改操作做一下差分放到对应点上,就成了求每个点子树内出现次数最多的颜色, ...

  7. HDU 3333 Turing Tree (线段树)

    Turing Tree Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  8. CodeForces 620E New Year Tree(线段树的骚操作第二弹)

    The New Year holidays are over, but Resha doesn't want to throw away the New Year tree. He invited h ...

  9. HDU 3333 Turing Tree 线段树+离线处理

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3333 Turing Tree Time Limit: 6000/3000 MS (Java/Othe ...

随机推荐

  1. nginx代理websocket协议

    以下是代码段.location /wsapp/ {     proxy_pass http://wsbackend;     proxy_http_version 1.1;     proxy_set ...

  2. 《JAVA与模式》之原型模式

    在阎宏博士的<JAVA与模式>一书中开头是这样描述原型(Prototype)模式的: 原型模式属于对象的创建模式.通过给出一个原型对象来指明所有创建的对象的类型,然后用复制这个原型对象的办 ...

  3. python学习笔记09-python编码与解码

    二进制编码: --->ASCII:只能存英文和拉丁字符 一个字符占一个字节:8位 ------>gb2312:只能存6700多个中文: 1980年发表 ----------->gbk ...

  4. python操作oracle数据库-查询

    python操作oracle数据库-查询 参照文档 http://www.oracle.com/technetwork/cn/articles/dsl/mastering-oracle-python- ...

  5. 微信小程序云函数 添加数据到数据库

    1.新建小程序,建立云开发快速启动模板 这里和普通小程序的区别有三点 一是 project.config.json写上云函数所在目录"cloudfunctionRoot": &qu ...

  6. Excel中复杂跨行跨列数据

    XSSFWorkbook wb = new XSSFWorkbook(); // 工作表 XSSFSheet sheet = wb.createSheet("车辆使用情况统计"); ...

  7. 解决ASP.NET MVC 下使用SQLite 报no such table的问题

    观察后发现项目中数据库的存放位置不正确. Web项目添加到App_Data文件夹下, 文件始终不复制 Web.Config文件下的连接字符串 <add name="SQLiteconn ...

  8. cat /proc/sys/net/ipv4/ip_forward 0 解决办法

    [root@localhost java]# cat /proc/sys/net/ipv4/ip_forward 出于安全考虑,Linux系统默认是禁止数据包转发的. 所谓转发即当主机拥有多于一块的网 ...

  9. Spring Security构建Rest服务-1001-spring social开发第三方登录之spring social基本原理

    OAuth协议是一个授权协议,目的是让用户在不将服务提供商的用户名密码交给第三方应用的条件下,让第三方应用可以有权限访问用户存在服务提供商上的资源. 接着上一篇说的,在第三方应用获取到用户资源后,如果 ...

  10. js判断手机是否安装了某一款app,有则打开,没有去下载

    function openApp(){ if(navigator.userAgent.match(/(iPhone|iPod|iPad);?/i)) { var loadDateTime = new ...