概要

前面分别介绍红黑树的理论知识、红黑树的C语言C++的实现。本章介绍红黑树的Java实现,若读者对红黑树的理论知识不熟悉,建立先学习红黑树的理论知识,再来学习本章。还是那句老话,红黑树的C/C++/Java实现,原理一样,择其一了解即可。

目录
1. 红黑树的介绍
2. 红黑树的Java实现(代码说明)
3. 红黑树的Java实现(完整源码)
4. 红黑树的Java测试程序

转载请注明出处:http://www.cnblogs.com/skywang12345/p/3624343.html


红黑树的介绍

红黑树(Red-Black Tree,简称R-B Tree),它一种特殊的二叉查找树。
红黑树是特殊的二叉查找树,意味着它满足二叉查找树的特征:任意一个节点所包含的键值,大于等于左孩子的键值,小于等于右孩子的键值。
除了具备该特性之外,红黑树还包括许多额外的信息。

红黑树的每个节点上都有存储位表示节点的颜色,颜色是红(Red)或黑(Black)。
红黑树的特性:
(1) 每个节点或者是黑色,或者是红色。
(2) 根节点是黑色。
(3) 每个叶子节点是黑色。 [注意:这里叶子节点,是指为空的叶子节点!]
(4) 如果一个节点是红色的,则它的子节点必须是黑色的。
(5) 从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。

关于它的特性,需要注意的是:
第一,特性(3)中的叶子节点,是只为空(NIL或null)的节点。
第二,特性(5),确保没有一条路径会比其他路径长出俩倍。因而,红黑树是相对是接近平衡的二叉树。

红黑树示意图如下:

红黑树的Java实现(代码说明)

红黑树的基本操作是添加删除旋转。在对红黑树进行添加或删除后,会用到旋转方法。为什么呢?道理很简单,添加或删除红黑树中的节点之后,红黑树就发生了变化,可能不满足红黑树的5条性质,也就不再是一颗红黑树了,而是一颗普通的树。而通过旋转,可以使这颗树重新成为红黑树。简单点说,旋转的目的是让树保持红黑树的特性。
旋转包括两种:左旋 和 右旋。下面分别对红黑树的基本操作进行介绍。

1. 基本定义

public class RBTree<T extends Comparable<T>> {

    private RBTNode<T> mRoot;    // 根结点

    private static final boolean RED   = false;
private static final boolean BLACK = true; public class RBTNode<T extends Comparable<T>> {
boolean color; // 颜色
T key; // 关键字(键值)
RBTNode<T> left; // 左孩子
RBTNode<T> right; // 右孩子
RBTNode<T> parent; // 父结点 public RBTNode(T key, boolean color, RBTNode<T> parent, RBTNode<T> left, RBTNode<T> right) {
this.key = key;
this.color = color;
this.parent = parent;
this.left = left;
this.right = right;
} } ...
}

RBTree是红黑树对应的类,RBTNode是红黑树的节点类。在RBTree中包含了根节点mRoot和红黑树的相关API。
注意:在实现红黑树API的过程中,我重载了许多函数。重载的原因,一是因为有的API是内部接口,有的是外部接口;二是为了让结构更加清晰。

2. 左旋

对x进行左旋,意味着"将x变成一个左节点"。

左旋的实现代码(Java语言)

/*
* 对红黑树的节点(x)进行左旋转
*
* 左旋示意图(对节点x进行左旋):
* px px
* / /
* x y
* / \ --(左旋)-. / \ #
* lx y x ry
* / \ / \
* ly ry lx ly
*
*
*/
private void leftRotate(RBTNode<T> x) {
// 设置x的右孩子为y
RBTNode<T> y = x.right; // 将 “y的左孩子” 设为 “x的右孩子”;
// 如果y的左孩子非空,将 “x” 设为 “y的左孩子的父亲”
x.right = y.left;
if (y.left != null)
y.left.parent = x; // 将 “x的父亲” 设为 “y的父亲”
y.parent = x.parent; if (x.parent == null) {
this.mRoot = y; // 如果 “x的父亲” 是空节点,则将y设为根节点
} else {
if (x.parent.left == x)
x.parent.left = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
else
x.parent.right = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
} // 将 “x” 设为 “y的左孩子”
y.left = x;
// 将 “x的父节点” 设为 “y”
x.parent = y;
}

3. 右旋

对y进行左旋,意味着"将y变成一个右节点"。

右旋的实现代码(Java语言)

/*
* 对红黑树的节点(y)进行右旋转
*
* 右旋示意图(对节点y进行左旋):
* py py
* / /
* y x
* / \ --(右旋)-. / \ #
* x ry lx y
* / \ / \ #
* lx rx rx ry
*
*/
private void rightRotate(RBTNode<T> y) {
// 设置x是当前节点的左孩子。
RBTNode<T> x = y.left; // 将 “x的右孩子” 设为 “y的左孩子”;
// 如果"x的右孩子"不为空的话,将 “y” 设为 “x的右孩子的父亲”
y.left = x.right;
if (x.right != null)
x.right.parent = y; // 将 “y的父亲” 设为 “x的父亲”
x.parent = y.parent; if (y.parent == null) {
this.mRoot = x; // 如果 “y的父亲” 是空节点,则将x设为根节点
} else {
if (y == y.parent.right)
y.parent.right = x; // 如果 y是它父节点的右孩子,则将x设为“y的父节点的右孩子”
else
y.parent.left = x; // (y是它父节点的左孩子) 将x设为“x的父节点的左孩子”
} // 将 “y” 设为 “x的右孩子”
x.right = y; // 将 “y的父节点” 设为 “x”
y.parent = x;
}

4. 添加

将一个节点插入到红黑树中,需要执行哪些步骤呢?首先,将红黑树当作一颗二叉查找树,将节点插入;然后,将节点着色为红色;最后,通过"旋转和重新着色"等一系列操作来修正该树,使之重新成为一颗红黑树。详细描述如下:
第一步: 将红黑树当作一颗二叉查找树,将节点插入。
       红黑树本身就是一颗二叉查找树,将节点插入后,该树仍然是一颗二叉查找树。也就意味着,树的键值仍然是有序的。此外,无论是左旋还是右旋,若旋转之前这棵树是二叉查找树,旋转之后它一定还是二叉查找树。这也就意味着,任何的旋转和重新着色操作,都不会改变它仍然是一颗二叉查找树的事实。
好吧?那接下来,我们就来想方设法的旋转以及重新着色,使这颗树重新成为红黑树!

第二步:将插入的节点着色为"红色"。
       为什么着色成红色,而不是黑色呢?为什么呢?在回答之前,我们需要重新温习一下红黑树的特性:
(1) 每个节点或者是黑色,或者是红色。
(2) 根节点是黑色。
(3) 每个叶子节点是黑色。 [注意:这里叶子节点,是指为空的叶子节点!]
(4) 如果一个节点是红色的,则它的子节点必须是黑色的。
(5) 从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。
      将插入的节点着色为红色,不会违背"特性(5)"!少违背一条特性,就意味着我们需要处理的情况越少。接下来,就要努力的让这棵树满足其它性质即可;满足了的话,它就又是一颗红黑树了。o(∩∩)o...哈哈

第三步: 通过一系列的旋转或着色等操作,使之重新成为一颗红黑树。
       第二步中,将插入节点着色为"红色"之后,不会违背"特性(5)"。那它到底会违背哪些特性呢?
       对于"特性(1)",显然不会违背了。因为我们已经将它涂成红色了。
       对于"特性(2)",显然也不会违背。在第一步中,我们是将红黑树当作二叉查找树,然后执行的插入操作。而根据二叉查找数的特点,插入操作不会改变根节点。所以,根节点仍然是黑色。
       对于"特性(3)",显然不会违背了。这里的叶子节点是指的空叶子节点,插入非空节点并不会对它们造成影响。
       对于"特性(4)",是有可能违背的!
       那接下来,想办法使之"满足特性(4)",就可以将树重新构造成红黑树了。

添加操作的实现代码(Java语言)

/*
* 将结点插入到红黑树中
*
* 参数说明:
* node 插入的结点 // 对应《算法导论》中的node
*/
private void insert(RBTNode<T> node) {
int cmp;
RBTNode<T> y = null;
RBTNode<T> x = this.mRoot; // 1. 将红黑树当作一颗二叉查找树,将节点添加到二叉查找树中。
while (x != null) {
y = x;
cmp = node.key.compareTo(x.key);
if (cmp < 0)
x = x.left;
else
x = x.right;
} node.parent = y;
if (y!=null) {
cmp = node.key.compareTo(y.key);
if (cmp < 0)
y.left = node;
else
y.right = node;
} else {
this.mRoot = node;
} // 2. 设置节点的颜色为红色
node.color = RED; // 3. 将它重新修正为一颗二叉查找树
insertFixUp(node);
} /*
* 新建结点(key),并将其插入到红黑树中
*
* 参数说明:
* key 插入结点的键值
*/
public void insert(T key) {
RBTNode<T> node=new RBTNode<T>(key,BLACK,null,null,null); // 如果新建结点失败,则返回。
if (node != null)
insert(node);
}

内部接口 -- insert(node)的作用是将"node"节点插入到红黑树中。
外部接口 -- insert(key)的作用是将"key"添加到红黑树中。

添加修正操作的实现代码(Java语言)

/*
* 红黑树插入修正函数
*
* 在向红黑树中插入节点之后(失去平衡),再调用该函数;
* 目的是将它重新塑造成一颗红黑树。
*
* 参数说明:
* node 插入的结点 // 对应《算法导论》中的z
*/
private void insertFixUp(RBTNode<T> node) {
RBTNode<T> parent, gparent; // 若“父节点存在,并且父节点的颜色是红色”
while (((parent = parentOf(node))!=null) && isRed(parent)) {
gparent = parentOf(parent); //若“父节点”是“祖父节点的左孩子”
if (parent == gparent.left) {
// Case 1条件:叔叔节点是红色
RBTNode<T> uncle = gparent.right;
if ((uncle!=null) && isRed(uncle)) {
setBlack(uncle);
setBlack(parent);
setRed(gparent);
node = gparent;
continue;
} // Case 2条件:叔叔是黑色,且当前节点是右孩子
if (parent.right == node) {
RBTNode<T> tmp;
leftRotate(parent);
tmp = parent;
parent = node;
node = tmp;
} // Case 3条件:叔叔是黑色,且当前节点是左孩子。
setBlack(parent);
setRed(gparent);
rightRotate(gparent);
} else { //若“z的父节点”是“z的祖父节点的右孩子”
// Case 1条件:叔叔节点是红色
RBTNode<T> uncle = gparent.left;
if ((uncle!=null) && isRed(uncle)) {
setBlack(uncle);
setBlack(parent);
setRed(gparent);
node = gparent;
continue;
} // Case 2条件:叔叔是黑色,且当前节点是左孩子
if (parent.left == node) {
RBTNode<T> tmp;
rightRotate(parent);
tmp = parent;
parent = node;
node = tmp;
} // Case 3条件:叔叔是黑色,且当前节点是右孩子。
setBlack(parent);
setRed(gparent);
leftRotate(gparent);
}
} // 将根节点设为黑色
setBlack(this.mRoot);
}

insertFixUp(node)的作用是对应"上面所讲的第三步"。它是一个内部接口。

5. 删除操作

将红黑树内的某一个节点删除。需要执行的操作依次是:首先,将红黑树当作一颗二叉查找树,将该节点从二叉查找树中删除;然后,通过"旋转和重新着色"等一系列来修正该树,使之重新成为一棵红黑树。详细描述如下:
第一步:将红黑树当作一颗二叉查找树,将节点删除。
       这和"删除常规二叉查找树中删除节点的方法是一样的"。分3种情况:
① 被删除节点没有儿子,即为叶节点。那么,直接将该节点删除就OK了。
② 被删除节点只有一个儿子。那么,直接删除该节点,并用该节点的唯一子节点顶替它的位置。
③ 被删除节点有两个儿子。那么,先找出它的后继节点;然后把“它的后继节点的内容”复制给“该节点的内容”;之后,删除“它的后继节点”。在这里,后继节点相当于替身,在将后继节点的内容复制给"被删除节点"之后,再将后继节点删除。这样就巧妙的将问题转换为"删除后继节点"的情况了,下面就考虑后继节点。 在"被删除节点"有两个非空子节点的情况下,它的后继节点不可能是双子非空。既然"的后继节点"不可能双子都非空,就意味着"该节点的后继节点"要么没有儿子,要么只有一个儿子。若没有儿子,则按"情况① "进行处理;若只有一个儿子,则按"情况② "进行处理。

第二步:通过"旋转和重新着色"等一系列来修正该树,使之重新成为一棵红黑树。
        因为"第一步"中删除节点之后,可能会违背红黑树的特性。所以需要通过"旋转和重新着色"来修正该树,使之重新成为一棵红黑树。

删除操作的实现代码(Java语言)

/*
* 删除结点(node),并返回被删除的结点
*
* 参数说明:
* node 删除的结点
*/
private void remove(RBTNode<T> node) {
RBTNode<T> child, parent;
boolean color; // 被删除节点的"左右孩子都不为空"的情况。
if ( (node.left!=null) && (node.right!=null) ) {
// 被删节点的后继节点。(称为"取代节点")
// 用它来取代"被删节点"的位置,然后再将"被删节点"去掉。
RBTNode<T> replace = node; // 获取后继节点
replace = replace.right;
while (replace.left != null)
replace = replace.left; // "node节点"不是根节点(只有根节点不存在父节点)
if (parentOf(node)!=null) {
if (parentOf(node).left == node)
parentOf(node).left = replace;
else
parentOf(node).right = replace;
} else {
// "node节点"是根节点,更新根节点。
this.mRoot = replace;
} // child是"取代节点"的右孩子,也是需要"调整的节点"。
// "取代节点"肯定不存在左孩子!因为它是一个后继节点。
child = replace.right;
parent = parentOf(replace);
// 保存"取代节点"的颜色
color = colorOf(replace); // "被删除节点"是"它的后继节点的父节点"
if (parent == node) {
parent = replace;
} else {
// child不为空
if (child!=null)
setParent(child, parent);
parent.left = child; replace.right = node.right;
setParent(node.right, replace);
} replace.parent = node.parent;
replace.color = node.color;
replace.left = node.left;
node.left.parent = replace; if (color == BLACK)
removeFixUp(child, parent); node = null;
return ;
} if (node.left !=null) {
child = node.left;
} else {
child = node.right;
} parent = node.parent;
// 保存"取代节点"的颜色
color = node.color; if (child!=null)
child.parent = parent; // "node节点"不是根节点
if (parent!=null) {
if (parent.left == node)
parent.left = child;
else
parent.right = child;
} else {
this.mRoot = child;
} if (color == BLACK)
removeFixUp(child, parent);
node = null;
} /*
* 删除结点(z),并返回被删除的结点
*
* 参数说明:
* tree 红黑树的根结点
* z 删除的结点
*/
public void remove(T key) {
RBTNode<T> node; if ((node = search(mRoot, key)) != null)
remove(node);
}

内部接口 -- remove(node)的作用是将"node"节点插入到红黑树中。
外部接口 -- remove(key)删除红黑树中键值为key的节点。

删除修正操作的实现代码(Java语言)

/*
* 红黑树删除修正函数
*
* 在从红黑树中删除插入节点之后(红黑树失去平衡),再调用该函数;
* 目的是将它重新塑造成一颗红黑树。
*
* 参数说明:
* node 待修正的节点
*/
private void removeFixUp(RBTNode<T> node, RBTNode<T> parent) {
RBTNode<T> other; while ((node==null || isBlack(node)) && (node != this.mRoot)) {
if (parent.left == node) {
other = parent.right;
if (isRed(other)) {
// Case 1: x的兄弟w是红色的
setBlack(other);
setRed(parent);
leftRotate(parent);
other = parent.right;
} if ((other.left==null || isBlack(other.left)) &&
(other.right==null || isBlack(other.right))) {
// Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的
setRed(other);
node = parent;
parent = parentOf(node);
} else { if (other.right==null || isBlack(other.right)) {
// Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。
setBlack(other.left);
setRed(other);
rightRotate(other);
other = parent.right;
}
// Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
setColor(other, colorOf(parent));
setBlack(parent);
setBlack(other.right);
leftRotate(parent);
node = this.mRoot;
break;
}
} else { other = parent.left;
if (isRed(other)) {
// Case 1: x的兄弟w是红色的
setBlack(other);
setRed(parent);
rightRotate(parent);
other = parent.left;
} if ((other.left==null || isBlack(other.left)) &&
(other.right==null || isBlack(other.right))) {
// Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的
setRed(other);
node = parent;
parent = parentOf(node);
} else { if (other.left==null || isBlack(other.left)) {
// Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。
setBlack(other.right);
setRed(other);
leftRotate(other);
other = parent.left;
} // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
setColor(other, colorOf(parent));
setBlack(parent);
setBlack(other.left);
rightRotate(parent);
node = this.mRoot;
break;
}
}
} if (node!=null)
setBlack(node);
}

removeFixup(node, parent)是对应"上面所讲的第三步"。它是一个内部接口。

红黑树的Java实现(完整源码)

下面是红黑树实现的完整代码和相应的测试程序。
(1) 除了上面所说的"左旋"、"右旋"、"添加"、"删除"等基本操作之后,还实现了"遍历"、"查找"、"打印"、"最小值"、"最大值"、"创建"、"销毁"等接口。
(2) 函数接口大多分为内部接口和外部接口。内部接口是private函数,外部接口则是public函数。
(3) 测试代码中提供了"插入"和"删除"动作的检测开关。默认是关闭的,打开方法可以参考"代码中的说明"。建议在打开开关后,在草稿上自己动手绘制一下红黑树。

红黑树的实现文件(RBTree.java)

  1 /**
2 * Java 语言: 红黑树
3 *
4 * @author skywang
5 * @date 2013/11/07
6 */
7
8 public class RBTree<T extends Comparable<T>> {
9
10 private RBTNode<T> mRoot; // 根结点
11
12 private static final boolean RED = false;
13 private static final boolean BLACK = true;
14
15 public class RBTNode<T extends Comparable<T>> {
16 boolean color; // 颜色
17 T key; // 关键字(键值)
18 RBTNode<T> left; // 左孩子
19 RBTNode<T> right; // 右孩子
20 RBTNode<T> parent; // 父结点
21
22 public RBTNode(T key, boolean color, RBTNode<T> parent, RBTNode<T> left, RBTNode<T> right) {
23 this.key = key;
24 this.color = color;
25 this.parent = parent;
26 this.left = left;
27 this.right = right;
28 }
29
30 public T getKey() {
31 return key;
32 }
33
34 public String toString() {
35 return ""+key+(this.color==RED?"(R)":"B");
36 }
37 }
38
39 public RBTree() {
40 mRoot=null;
41 }
42
43 private RBTNode<T> parentOf(RBTNode<T> node) {
44 return node!=null ? node.parent : null;
45 }
46 private boolean colorOf(RBTNode<T> node) {
47 return node!=null ? node.color : BLACK;
48 }
49 private boolean isRed(RBTNode<T> node) {
50 return ((node!=null)&&(node.color==RED)) ? true : false;
51 }
52 private boolean isBlack(RBTNode<T> node) {
53 return !isRed(node);
54 }
55 private void setBlack(RBTNode<T> node) {
56 if (node!=null)
57 node.color = BLACK;
58 }
59 private void setRed(RBTNode<T> node) {
60 if (node!=null)
61 node.color = RED;
62 }
63 private void setParent(RBTNode<T> node, RBTNode<T> parent) {
64 if (node!=null)
65 node.parent = parent;
66 }
67 private void setColor(RBTNode<T> node, boolean color) {
68 if (node!=null)
69 node.color = color;
70 }
71
72 /*
73 * 前序遍历"红黑树"
74 */
75 private void preOrder(RBTNode<T> tree) {
76 if(tree != null) {
77 System.out.print(tree.key+" ");
78 preOrder(tree.left);
79 preOrder(tree.right);
80 }
81 }
82
83 public void preOrder() {
84 preOrder(mRoot);
85 }
86
87 /*
88 * 中序遍历"红黑树"
89 */
90 private void inOrder(RBTNode<T> tree) {
91 if(tree != null) {
92 inOrder(tree.left);
93 System.out.print(tree.key+" ");
94 inOrder(tree.right);
95 }
96 }
97
98 public void inOrder() {
99 inOrder(mRoot);
100 }
101
102
103 /*
104 * 后序遍历"红黑树"
105 */
106 private void postOrder(RBTNode<T> tree) {
107 if(tree != null)
108 {
109 postOrder(tree.left);
110 postOrder(tree.right);
111 System.out.print(tree.key+" ");
112 }
113 }
114
115 public void postOrder() {
116 postOrder(mRoot);
117 }
118
119
120 /*
121 * (递归实现)查找"红黑树x"中键值为key的节点
122 */
123 private RBTNode<T> search(RBTNode<T> x, T key) {
124 if (x==null)
125 return x;
126
127 int cmp = key.compareTo(x.key);
128 if (cmp < 0)
129 return search(x.left, key);
130 else if (cmp > 0)
131 return search(x.right, key);
132 else
133 return x;
134 }
135
136 public RBTNode<T> search(T key) {
137 return search(mRoot, key);
138 }
139
140 /*
141 * (非递归实现)查找"红黑树x"中键值为key的节点
142 */
143 private RBTNode<T> iterativeSearch(RBTNode<T> x, T key) {
144 while (x!=null) {
145 int cmp = key.compareTo(x.key);
146
147 if (cmp < 0)
148 x = x.left;
149 else if (cmp > 0)
150 x = x.right;
151 else
152 return x;
153 }
154
155 return x;
156 }
157
158 public RBTNode<T> iterativeSearch(T key) {
159 return iterativeSearch(mRoot, key);
160 }
161
162 /*
163 * 查找最小结点:返回tree为根结点的红黑树的最小结点。
164 */
165 private RBTNode<T> minimum(RBTNode<T> tree) {
166 if (tree == null)
167 return null;
168
169 while(tree.left != null)
170 tree = tree.left;
171 return tree;
172 }
173
174 public T minimum() {
175 RBTNode<T> p = minimum(mRoot);
176 if (p != null)
177 return p.key;
178
179 return null;
180 }
181
182 /*
183 * 查找最大结点:返回tree为根结点的红黑树的最大结点。
184 */
185 private RBTNode<T> maximum(RBTNode<T> tree) {
186 if (tree == null)
187 return null;
188
189 while(tree.right != null)
190 tree = tree.right;
191 return tree;
192 }
193
194 public T maximum() {
195 RBTNode<T> p = maximum(mRoot);
196 if (p != null)
197 return p.key;
198
199 return null;
200 }
201
202 /*
203 * 找结点(x)的后继结点。即,查找"红黑树中数据值大于该结点"的"最小结点"。
204 */
205 public RBTNode<T> successor(RBTNode<T> x) {
206 // 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。
207 if (x.right != null)
208 return minimum(x.right);
209
210 // 如果x没有右孩子。则x有以下两种可能:
211 // (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。
212 // (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。
213 RBTNode<T> y = x.parent;
214 while ((y!=null) && (x==y.right)) {
215 x = y;
216 y = y.parent;
217 }
218
219 return y;
220 }
221
222 /*
223 * 找结点(x)的前驱结点。即,查找"红黑树中数据值小于该结点"的"最大结点"。
224 */
225 public RBTNode<T> predecessor(RBTNode<T> x) {
226 // 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。
227 if (x.left != null)
228 return maximum(x.left);
229
230 // 如果x没有左孩子。则x有以下两种可能:
231 // (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。
232 // (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。
233 RBTNode<T> y = x.parent;
234 while ((y!=null) && (x==y.left)) {
235 x = y;
236 y = y.parent;
237 }
238
239 return y;
240 }
241
242 /*
243 * 对红黑树的节点(x)进行左旋转
244 *
245 * 左旋示意图(对节点x进行左旋):
246 * px px
247 * / /
248 * x y
249 * / \ --(左旋)-. / \ #
250 * lx y x ry
251 * / \ / \
252 * ly ry lx ly
253 *
254 *
255 */
256 private void leftRotate(RBTNode<T> x) {
257 // 设置x的右孩子为y
258 RBTNode<T> y = x.right;
259
260 // 将 “y的左孩子” 设为 “x的右孩子”;
261 // 如果y的左孩子非空,将 “x” 设为 “y的左孩子的父亲”
262 x.right = y.left;
263 if (y.left != null)
264 y.left.parent = x;
265
266 // 将 “x的父亲” 设为 “y的父亲”
267 y.parent = x.parent;
268
269 if (x.parent == null) {
270 this.mRoot = y; // 如果 “x的父亲” 是空节点,则将y设为根节点
271 } else {
272 if (x.parent.left == x)
273 x.parent.left = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
274 else
275 x.parent.right = y; // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
276 }
277
278 // 将 “x” 设为 “y的左孩子”
279 y.left = x;
280 // 将 “x的父节点” 设为 “y”
281 x.parent = y;
282 }
283
284 /*
285 * 对红黑树的节点(y)进行右旋转
286 *
287 * 右旋示意图(对节点y进行左旋):
288 * py py
289 * / /
290 * y x
291 * / \ --(右旋)-. / \ #
292 * x ry lx y
293 * / \ / \ #
294 * lx rx rx ry
295 *
296 */
297 private void rightRotate(RBTNode<T> y) {
298 // 设置x是当前节点的左孩子。
299 RBTNode<T> x = y.left;
300
301 // 将 “x的右孩子” 设为 “y的左孩子”;
302 // 如果"x的右孩子"不为空的话,将 “y” 设为 “x的右孩子的父亲”
303 y.left = x.right;
304 if (x.right != null)
305 x.right.parent = y;
306
307 // 将 “y的父亲” 设为 “x的父亲”
308 x.parent = y.parent;
309
310 if (y.parent == null) {
311 this.mRoot = x; // 如果 “y的父亲” 是空节点,则将x设为根节点
312 } else {
313 if (y == y.parent.right)
314 y.parent.right = x; // 如果 y是它父节点的右孩子,则将x设为“y的父节点的右孩子”
315 else
316 y.parent.left = x; // (y是它父节点的左孩子) 将x设为“x的父节点的左孩子”
317 }
318
319 // 将 “y” 设为 “x的右孩子”
320 x.right = y;
321
322 // 将 “y的父节点” 设为 “x”
323 y.parent = x;
324 }
325
326 /*
327 * 红黑树插入修正函数
328 *
329 * 在向红黑树中插入节点之后(失去平衡),再调用该函数;
330 * 目的是将它重新塑造成一颗红黑树。
331 *
332 * 参数说明:
333 * node 插入的结点 // 对应《算法导论》中的z
334 */
335 private void insertFixUp(RBTNode<T> node) {
336 RBTNode<T> parent, gparent;
337
338 // 若“父节点存在,并且父节点的颜色是红色”
339 while (((parent = parentOf(node))!=null) && isRed(parent)) {
340 gparent = parentOf(parent);
341
342 //若“父节点”是“祖父节点的左孩子”
343 if (parent == gparent.left) {
344 // Case 1条件:叔叔节点是红色
345 RBTNode<T> uncle = gparent.right;
346 if ((uncle!=null) && isRed(uncle)) {
347 setBlack(uncle);
348 setBlack(parent);
349 setRed(gparent);
350 node = gparent;
351 continue;
352 }
353
354 // Case 2条件:叔叔是黑色,且当前节点是右孩子
355 if (parent.right == node) {
356 RBTNode<T> tmp;
357 leftRotate(parent);
358 tmp = parent;
359 parent = node;
360 node = tmp;
361 }
362
363 // Case 3条件:叔叔是黑色,且当前节点是左孩子。
364 setBlack(parent);
365 setRed(gparent);
366 rightRotate(gparent);
367 } else { //若“z的父节点”是“z的祖父节点的右孩子”
368 // Case 1条件:叔叔节点是红色
369 RBTNode<T> uncle = gparent.left;
370 if ((uncle!=null) && isRed(uncle)) {
371 setBlack(uncle);
372 setBlack(parent);
373 setRed(gparent);
374 node = gparent;
375 continue;
376 }
377
378 // Case 2条件:叔叔是黑色,且当前节点是左孩子
379 if (parent.left == node) {
380 RBTNode<T> tmp;
381 rightRotate(parent);
382 tmp = parent;
383 parent = node;
384 node = tmp;
385 }
386
387 // Case 3条件:叔叔是黑色,且当前节点是右孩子。
388 setBlack(parent);
389 setRed(gparent);
390 leftRotate(gparent);
391 }
392 }
393
394 // 将根节点设为黑色
395 setBlack(this.mRoot);
396 }
397
398 /*
399 * 将结点插入到红黑树中
400 *
401 * 参数说明:
402 * node 插入的结点 // 对应《算法导论》中的node
403 */
404 private void insert(RBTNode<T> node) {
405 int cmp;
406 RBTNode<T> y = null;
407 RBTNode<T> x = this.mRoot;
408
409 // 1. 将红黑树当作一颗二叉查找树,将节点添加到二叉查找树中。
410 while (x != null) {
411 y = x;
412 cmp = node.key.compareTo(x.key);
413 if (cmp < 0)
414 x = x.left;
415 else
416 x = x.right;
417 }
418
419 node.parent = y;
420 if (y!=null) {
421 cmp = node.key.compareTo(y.key);
422 if (cmp < 0)
423 y.left = node;
424 else
425 y.right = node;
426 } else {
427 this.mRoot = node;
428 }
429
430 // 2. 设置节点的颜色为红色
431 node.color = RED;
432
433 // 3. 将它重新修正为一颗二叉查找树
434 insertFixUp(node);
435 }
436
437 /*
438 * 新建结点(key),并将其插入到红黑树中
439 *
440 * 参数说明:
441 * key 插入结点的键值
442 */
443 public void insert(T key) {
444 RBTNode<T> node=new RBTNode<T>(key,BLACK,null,null,null);
445
446 // 如果新建结点失败,则返回。
447 if (node != null)
448 insert(node);
449 }
450
451
452 /*
453 * 红黑树删除修正函数
454 *
455 * 在从红黑树中删除插入节点之后(红黑树失去平衡),再调用该函数;
456 * 目的是将它重新塑造成一颗红黑树。
457 *
458 * 参数说明:
459 * node 待修正的节点
460 */
461 private void removeFixUp(RBTNode<T> node, RBTNode<T> parent) {
462 RBTNode<T> other;
463
464 while ((node==null || isBlack(node)) && (node != this.mRoot)) {
465 if (parent.left == node) {
466 other = parent.right;
467 if (isRed(other)) {
468 // Case 1: x的兄弟w是红色的
469 setBlack(other);
470 setRed(parent);
471 leftRotate(parent);
472 other = parent.right;
473 }
474
475 if ((other.left==null || isBlack(other.left)) &&
476 (other.right==null || isBlack(other.right))) {
477 // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的
478 setRed(other);
479 node = parent;
480 parent = parentOf(node);
481 } else {
482
483 if (other.right==null || isBlack(other.right)) {
484 // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。
485 setBlack(other.left);
486 setRed(other);
487 rightRotate(other);
488 other = parent.right;
489 }
490 // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
491 setColor(other, colorOf(parent));
492 setBlack(parent);
493 setBlack(other.right);
494 leftRotate(parent);
495 node = this.mRoot;
496 break;
497 }
498 } else {
499
500 other = parent.left;
501 if (isRed(other)) {
502 // Case 1: x的兄弟w是红色的
503 setBlack(other);
504 setRed(parent);
505 rightRotate(parent);
506 other = parent.left;
507 }
508
509 if ((other.left==null || isBlack(other.left)) &&
510 (other.right==null || isBlack(other.right))) {
511 // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的
512 setRed(other);
513 node = parent;
514 parent = parentOf(node);
515 } else {
516
517 if (other.left==null || isBlack(other.left)) {
518 // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。
519 setBlack(other.right);
520 setRed(other);
521 leftRotate(other);
522 other = parent.left;
523 }
524
525 // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
526 setColor(other, colorOf(parent));
527 setBlack(parent);
528 setBlack(other.left);
529 rightRotate(parent);
530 node = this.mRoot;
531 break;
532 }
533 }
534 }
535
536 if (node!=null)
537 setBlack(node);
538 }
539
540 /*
541 * 删除结点(node),并返回被删除的结点
542 *
543 * 参数说明:
544 * node 删除的结点
545 */
546 private void remove(RBTNode<T> node) {
547 RBTNode<T> child, parent;
548 boolean color;
549
550 // 被删除节点的"左右孩子都不为空"的情况。
551 if ( (node.left!=null) && (node.right!=null) ) {
552 // 被删节点的后继节点。(称为"取代节点")
553 // 用它来取代"被删节点"的位置,然后再将"被删节点"去掉。
554 RBTNode<T> replace = node;
555
556 // 获取后继节点
557 replace = replace.right;
558 while (replace.left != null)
559 replace = replace.left;
560
561 // "node节点"不是根节点(只有根节点不存在父节点)
562 if (parentOf(node)!=null) {
563 if (parentOf(node).left == node)
564 parentOf(node).left = replace;
565 else
566 parentOf(node).right = replace;
567 } else {
568 // "node节点"是根节点,更新根节点。
569 this.mRoot = replace;
570 }
571
572 // child是"取代节点"的右孩子,也是需要"调整的节点"。
573 // "取代节点"肯定不存在左孩子!因为它是一个后继节点。
574 child = replace.right;
575 parent = parentOf(replace);
576 // 保存"取代节点"的颜色
577 color = colorOf(replace);
578
579 // "被删除节点"是"它的后继节点的父节点"
580 if (parent == node) {
581 parent = replace;
582 } else {
583 // child不为空
584 if (child!=null)
585 setParent(child, parent);
586 parent.left = child;
587
588 replace.right = node.right;
589 setParent(node.right, replace);
590 }
591
592 replace.parent = node.parent;
593 replace.color = node.color;
594 replace.left = node.left;
595 node.left.parent = replace;
596
597 if (color == BLACK)
598 removeFixUp(child, parent);
599
600 node = null;
601 return ;
602 }
603
604 if (node.left !=null) {
605 child = node.left;
606 } else {
607 child = node.right;
608 }
609
610 parent = node.parent;
611 // 保存"取代节点"的颜色
612 color = node.color;
613
614 if (child!=null)
615 child.parent = parent;
616
617 // "node节点"不是根节点
618 if (parent!=null) {
619 if (parent.left == node)
620 parent.left = child;
621 else
622 parent.right = child;
623 } else {
624 this.mRoot = child;
625 }
626
627 if (color == BLACK)
628 removeFixUp(child, parent);
629 node = null;
630 }
631
632 /*
633 * 删除结点(z),并返回被删除的结点
634 *
635 * 参数说明:
636 * tree 红黑树的根结点
637 * z 删除的结点
638 */
639 public void remove(T key) {
640 RBTNode<T> node;
641
642 if ((node = search(mRoot, key)) != null)
643 remove(node);
644 }
645
646 /*
647 * 销毁红黑树
648 */
649 private void destroy(RBTNode<T> tree) {
650 if (tree==null)
651 return ;
652
653 if (tree.left != null)
654 destroy(tree.left);
655 if (tree.right != null)
656 destroy(tree.right);
657
658 tree=null;
659 }
660
661 public void clear() {
662 destroy(mRoot);
663 mRoot = null;
664 }
665
666 /*
667 * 打印"红黑树"
668 *
669 * key -- 节点的键值
670 * direction -- 0,表示该节点是根节点;
671 * -1,表示该节点是它的父结点的左孩子;
672 * 1,表示该节点是它的父结点的右孩子。
673 */
674 private void print(RBTNode<T> tree, T key, int direction) {
675
676 if(tree != null) {
677
678 if(direction==0) // tree是根节点
679 System.out.printf("%2d(B) is root\n", tree.key);
680 else // tree是分支节点
681 System.out.printf("%2d(%s) is %2d's %6s child\n", tree.key, isRed(tree)?"R":"B", key, direction==1?"right" : "left");
682
683 print(tree.left, tree.key, -1);
684 print(tree.right,tree.key, 1);
685 }
686 }
687
688 public void print() {
689 if (mRoot != null)
690 print(mRoot, mRoot.key, 0);
691 }
692 }

红黑树的测试文件(RBTreeTest.java)

 1 /**
2 * Java 语言: 二叉查找树
3 *
4 * @author skywang
5 * @date 2013/11/07
6 */
7 public class RBTreeTest {
8
9 private static final int a[] = {10, 40, 30, 60, 90, 70, 20, 50, 80};
10 private static final boolean mDebugInsert = false; // "插入"动作的检测开关(false,关闭;true,打开)
11 private static final boolean mDebugDelete = false; // "删除"动作的检测开关(false,关闭;true,打开)
12
13 public static void main(String[] args) {
14 int i, ilen = a.length;
15 RBTree<Integer> tree=new RBTree<Integer>();
16
17 System.out.printf("== 原始数据: ");
18 for(i=0; i<ilen; i++)
19 System.out.printf("%d ", a[i]);
20 System.out.printf("\n");
21
22 for(i=0; i<ilen; i++) {
23 tree.insert(a[i]);
24 // 设置mDebugInsert=true,测试"添加函数"
25 if (mDebugInsert) {
26 System.out.printf("== 添加节点: %d\n", a[i]);
27 System.out.printf("== 树的详细信息: \n");
28 tree.print();
29 System.out.printf("\n");
30 }
31 }
32
33 System.out.printf("== 前序遍历: ");
34 tree.preOrder();
35
36 System.out.printf("\n== 中序遍历: ");
37 tree.inOrder();
38
39 System.out.printf("\n== 后序遍历: ");
40 tree.postOrder();
41 System.out.printf("\n");
42
43 System.out.printf("== 最小值: %s\n", tree.minimum());
44 System.out.printf("== 最大值: %s\n", tree.maximum());
45 System.out.printf("== 树的详细信息: \n");
46 tree.print();
47 System.out.printf("\n");
48
49 // 设置mDebugDelete=true,测试"删除函数"
50 if (mDebugDelete) {
51 for(i=0; i<ilen; i++)
52 {
53 tree.remove(a[i]);
54
55 System.out.printf("== 删除节点: %d\n", a[i]);
56 System.out.printf("== 树的详细信息: \n");
57 tree.print();
58 System.out.printf("\n");
59 }
60 }
61
62 // 销毁二叉树
63 tree.clear();
64 }
65 }

红黑树的Java测试程序

前面已经给出了红黑树的测试代码(RBTreeTest.java),这里就不再重复说明。下面是测试程序的运行结果:

== 原始数据: 10 40 30 60 90 70 20 50 80
== 前序遍历: 30 10 20 60 40 50 80 70 90
== 中序遍历: 10 20 30 40 50 60 70 80 90
== 后序遍历: 20 10 50 40 70 90 80 60 30
== 最小值: 10
== 最大值: 90
== 树的详细信息:
30(B) is root
10(B) is 30's left child
20(R) is 10's right child
60(R) is 30's right child
40(B) is 60's left child
50(R) is 40's right child
80(B) is 60's right child
70(R) is 80's left child
90(R) is 80's right child

红黑树 Java实现的更多相关文章

  1. 【数据结构】红黑树-Java实现

    WIKI:https://en.wikipedia.org/wiki/Red%E2%80%93black_tree 转:红黑树(五)之 Java的实现 总结的比较精炼的: http://www.cnb ...

  2. 红黑树java代码实现

    红黑树 思想源于:https://www.cnblogs.com/nananana/p/10434549.html有解释有图,很清晰(删除时需考虑根节点和兄弟节点的子节点是否存在) package t ...

  3. java——红黑树 RBTree

    对于完全随机的数据,普通的二分搜索树就很好用,只是在极端情况下会退化成链表. 对于查询较多的情况,avl树很好用. 红黑树牺牲了平衡性,但是它的统计性能更优(综合增删改查所有的操作). 红黑树java ...

  4. 从2-3-4树到红黑树(下) Java与C的实现

    欢迎探讨,如有错误敬请指正 如需转载,请注明出处   http://www.cnblogs.com/nullzx/ 相关博客: 从2-3-4树到红黑树(上) 从2-3-4树到红黑树(中) 1. 实现技 ...

  5. 红黑树(五)之 Java的实现

    概要 前面分别介绍红黑树的理论知识.红黑树的C语言和C++的实现.本章介绍红黑树的Java实现,若读者对红黑树的理论知识不熟悉,建立先学习红黑树的理论知识,再来学习本章.还是那句老话,红黑树的C/C+ ...

  6. java中treemap和treeset实现(红黑树)

    java中treemap和treeset实现(红黑树)   TreeMap 的实现就是红黑树数据结构,也就说是一棵自平衡的排序二叉树,这样就可以保证当需要快速检索指定节点. TreeSet 和 Tre ...

  7. Java 7之集合类型 - 二叉排序树、平衡树、红黑树---转

    http://blog.csdn.net/mazhimazh/article/details/19961017 为了理解 TreeMap 的底层实现,必须先介绍排序二叉树和平衡二叉树,然后继续介绍红黑 ...

  8. JAVA中的数据结构 - 1,红黑树

    背景: 在JDK源码中, 有treeMap和JDK8的HashMap都用到了红黑树去存储 红黑树可以看成B树的一种: 二叉树-->搜索二叉树-->平衡搜索二叉树-->B树--> ...

  9. JAVA中的数据结构 - 真正的去理解红黑树

    一, 红黑树所处数据结构的位置: 在JDK源码中, 有treeMap和JDK8的HashMap都用到了红黑树去存储 红黑树可以看成B树的一种: 从二叉树看,红黑树是一颗相对平衡的二叉树 二叉树--&g ...

随机推荐

  1. 沧桑巨变中焕发青春活力-记极1s HC5661A 打怪升级之路

    最近发现一个新货umaxhosting年付10美元的便宜VPS.2杯喜茶的价格可以让你在国外拥有一个1024MB (1GB) DDR3 RAM.1024MB (1GB) vSwap.70GB RAID ...

  2. Win环境 Android Studio使用Git 教程 ( 一 )

    一. 安装 下载安装完成Git后 进入命令行 输入命令git --version,如果能显示版本则说明安装成功,如果没有显示版本,需要配置环境变量: 在path中添加git的安装位置 二 . 配置信息 ...

  3. halcon 手眼标定的坐标转换原理讲解

    原文链接:https://blog.csdn.net/opencv_learner/article/details/82113323 一直以来,对于手眼标定所涉及到的坐标系及坐标系之间的转换关系都没能 ...

  4. MergeSort 归并排序(java)

    MergeSort 归并排序 排序思想:1,分解待排序的n个元素为两个子列,各为n/2个元素 2,若子列没有排好序,重复1步骤,每个子列继续分解为两个子列,直至被分解的子列个数为1 3,子列元素个数为 ...

  5. XSS分类&危害&防御

    XSS(跨站脚本)漏洞是什么? 在网页中插入恶意的js脚本,由于网站没对其过滤,当用户浏览时,就会触发脚本,造成XSS攻击 XSS分类? 1.反射型 用户输入的注入代通过浏览器传入到服务器后,又被目标 ...

  6. 算法工程师进化-SQL

    1 引言 SQL操作往往是程序员必备的技能,对于算法工程师而言,熟练掌握SQL操作则更为重要.本文以<SQL语句执行顺序>作为学习资料,总结SQL的理论部分. 2 SQL查询语句的执行顺序 ...

  7. tomcat 项目的搭建-【Linux】

  8. [转载]使用mpvue搭建一个初始小程序

    1. 初始化一个 mpvue 项目 现代前端开发框架和环境都是需要 Node.js 的,如果没有的话,请先下载 nodejs 并安装. 然后打开命令行工具: # 1. 先检查下 Node.js 是否安 ...

  9. Hyperledger Fabric Capabilities——超级账本功能汇总

    Hyperledger Fabric是一种模块化的区块链架构,是分布式记账技术(DLT)的一种独特的实现,它提供了可供企业运用的网络,具备安全.可伸缩.加密和可执行等特性.Hyperledger Fa ...

  10. java后端面试题汇总

    转载链接:https://www.nowcoder.com/discuss/90776?type=0&order=0&pos=23&page=0 基础篇 数据结构与算法 线性表 ...