Problem Description

Little A is an astronomy lover, and he has found that the sky was so beautiful!
So he is counting stars now!
There are n
stars in the sky, and little A has connected them by m non-directional
edges.
It is guranteed that no edges connect one star with itself, and
every two edges connect different pairs of stars.
Now little A wants to
know that how many different "A-Structure"s are there in the sky, can you help
him?
An "A-structure" can be seen as a non-directional subgraph G, with a
set of four nodes V and a set of five edges E.
If V=(A,B,C,D)and E=(AB,BC,CD,DA,AC), we call G as an "A-structure".
It is defined that "A-structure" G1=V1+E1 and G2=V2+E2 are same only in the condition that V1=V2 and E1=E2
 
Input
There are no more than 300 test cases.
For each
test case, there are 2 positive integers n and m in the first line.
2≤n≤105, 1≤m≤min(2×105,n(n−1)2)
And then m lines follow, in each line there are two positive integers u and v, describing that this edge connects node u and node v.
1≤u,v≤n 
∑n≤3×105,∑m≤6×105
 
Output
For each test case, just output one integer--the number
of different "A-structure"s in one line.
 
Sample Input
4 5
1 2
2 3
3 4
4 1
1 3
4 6
1 2
2 3
3 4
4 1
1 3
2 4
 
Sample Output
1
6

题意:给定一张无向图,求有公共边的三元环对数。

Solution:

  三元环裸题。

  直接三元环计数,然后开一个桶记录一下每条边在多少个三元环中出现,最后的答案就是$\sum_\limits{i=1}^{i\leq m}{\frac{tot[i]*(tot[i]-1)}{2}}$。

代码:

/*Code by 520 -- 9.10*/
#include<iostream>
#include<cstdio>
#include<cstring>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=,M=;
int n,m,to[M],net[M],h[N],cnt,tot[M],pre[N],vis[N],deg[N];
struct node{
int u,v;
}e[M];
ll ans; il void add(int u,int v){to[++cnt]=v,net[cnt]=h[u],h[u]=cnt;} int main(){
while(scanf("%d%d",&n,&m)==){
For(i,,m) scanf("%d%d",&e[i].u,&e[i].v),deg[e[i].u]++,deg[e[i].v]++;
For(i,,m) {
RE int u=e[i].u,v=e[i].v;
if(deg[u]<deg[v]||deg[u]==deg[v]&&u>v) swap(u,v);
add(u,v);
}
For(u,,n){
for(RE int i=h[u];i;i=net[i]) vis[to[i]]=u,pre[to[i]]=i;
for(RE int i=h[u];i;i=net[i]){
RE int v=to[i];
for(RE int j=h[v];j;j=net[j]){
RE int w=to[j];
if(vis[w]==u) ++tot[i],++tot[j],++tot[pre[w]];
}
}
}
For(i,,cnt) ans+=1ll*tot[i]*(tot[i]-)/;
printf("%lld\n",ans);
memset(h,,sizeof(h)),memset(deg,,sizeof(deg)),
memset(tot,,sizeof(tot)),memset(pre,,sizeof(pre)),
memset(vis,,sizeof(vis)),cnt=,ans=;
}
return ;
}

HDU 6184 Counting Stars的更多相关文章

  1. [hdu 6184 Counting Stars(三元环计数)

    hdu 6184 Counting Stars(三元环计数) 题意: 给一张n个点m条边的无向图,问有多少个\(A-structure\) 其中\(A-structure\)满足\(V=(A,B,C, ...

  2. 【刷题】HDU 6184 Counting Stars

    Problem Description Little A is an astronomy lover, and he has found that the sky was so beautiful! ...

  3. HDU 6184 Counting Stars 经典三元环计数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6184 题意: n个点m条边的无向图,问有多少个A-structure 其中A-structure满足V ...

  4. 三元环HDU 6184

    HDU - 6184 C - Counting Stars 题目大意:有n个点,m条边,问有一共有多少个‘structure’也就是满足V=(A,B,C,D) and E=(AB,BC,CD,DA,A ...

  5. XidianOJ 1177 Counting Stars

    题目描述 "But baby, I've been, I've been praying hard,     Said, no more counting dollars     We'll ...

  6. hdu 5862 Counting Intersections

    传送门:hdu 5862 Counting Intersections 题意:对于平行于坐标轴的n条线段,求两两相交的线段对有多少个,包括十,T型 官方题解:由于数据限制,只有竖向与横向的线段才会产生 ...

  7. HDU 5862 Counting Intersections(离散化+树状数组)

    HDU 5862 Counting Intersections(离散化+树状数组) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 D ...

  8. Counting Stars

    Counting Stars 题目链接:http://acm.xidian.edu.cn/problem.php?id=1177 离线+一维树状数组 一眼扫过去:平面区间求和,1e6的数据范围,这要h ...

  9. Hdu 5862 Counting Intersections(有n条线段,每一条线段都是平行于x轴或者y轴,问有多少个交点+树状数组区间求和单点跟新)

    传送门:Hdu 5862 Counting Intersections 题意:有n条线段,每一条线段都是平行于x轴或者y轴,问有多少个交点 分析: 基本的操作流程是:先将所有的线段按照横树坐标x按小的 ...

随机推荐

  1. SpringBoot日记——Web开发篇

    准备开始实战啦!~~~~ 我们先来看,SpringBoot的web是如何做web开发的呢?通常的步骤如下: 1.创建springboot应用,指定模块: 2.配置部分参数配置: 3.编写业务代码: 为 ...

  2. 什么是Gradle

    一.什么是Gradle 简单的说,Gradle是一个构建工具,它是用来帮助我们构建app的,构建包括编译.打包等过程.我们可以为Gradle指定构建规则,然后它就会根据我们的“命令”自动为我们构建ap ...

  3. appium自动化---activity获取

    方法一:appt查询activity获取 aapt dump badging <路径/包名> | find "launchable-activity" 方法二: 1.打 ...

  4. Fiddler 抓包浅析

    Fiddler 工具浅析 Fiddler 是位于客户端和服务器端的 HTTP 代理,也是目前最常用的 HTTP 抓包工具之一.(Mac OS 建议采用 Charles) 它可以记录客户端和服务器之间的 ...

  5. oracle表空间的创建及dmp 文件的导入

    --用oracle系统权限的账号 登陆 -- 1.创建用户 create user u_name identified by "u_password"; --2.赋予权限 gran ...

  6. SICP读书笔记 3.1

    SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...

  7. 比较undefined和“undefined”

    说实话,它们之间的区别挺明显的,我们一般认为undefined是JavaScript提供的一个“关键字”,而“undefined”却是一个字符串,只是引号的内容和undefined一样. undefi ...

  8. 数学建模及机器学习算法(一):聚类-kmeans(Python及MATLAB实现,包括k值选取与聚类效果评估)

    一.聚类的概念 聚类分析是在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好.我们事先并不知道数据的正确结果(类标),通过聚类算法来发现和挖掘数据本身的结 ...

  9. jar包、war包

    JavaSE程序可以打包成Jar包(J其实可以理解为Java了),而JavaWeb程序可以打包成war包(w其实可以理解为Web了).然后把war发布到Tomcat的webapps目录下,Tomcat ...

  10. Redis的C语言客户端(hiredis)的安装和使用

    关键词:hiredis, cRedis, redis clients, redis客户端, C客户端, 华为云分布式缓存服务 hiredis是一个非常全面的C语言版redis接口库,支持所有命令.管道 ...