【agc019F】Yes or No
Description
给你\(n+m\)个询问,其中\(n\)个的答案是\(Yes\),\(m\)个的答案是\(No\),现在依次回答这些询问,每回答一个询问就告诉你听你回答对了还是没对,求最优策略下答对题目期望数量对\(998244353\)取模
Solution
个人感觉很棒的一题qwq
首先我们可以设出一个无脑dp:\(f[n][m]\)表示有\(n\)个\(Yes\)和\(m\)个\(No\)情况下的答案,策略的话当然是哪个剩的多就猜哪个,一样多随便猜一个,那么我们可以得到转移:
\frac{n}{n+m}(f[n-1][m]+1)+\frac{m}{n+m}f[n][m-1]&(n>m)\\
\\
\frac{m}{n+m}(f[n][m-1]+1)+\frac{n}{n+m}f[n-1][m]&(n<m)\\
\\
上面随便选一个(其实就是随便乱猜有\frac{1}{2}的概率有1的贡献)&(n=m)
\end{cases}
\]
然后我们可以将这个东西放到一个。。坐标系里面,横坐标对应\(n\),纵坐标对应\(m\),那么一种回答的方案就相当于从\((n,m)\)出发到\((0,0)\)的一条路径,考虑画一条\(y=x\)的直线,整个坐标系被这条线分成了两大部分,线上方的点都满足\(y>x\),下方则是\(x>y\),那么放回上面的式子里面,先不看概率只看贡献,会发现在下方横向的路径是有贡献的,上方纵向的路径是有贡献的
为了方便下面的描述,我们不妨令\(n>=m\),因为我们的策略中如果一样多就随便猜一个,所以从对角线上点转移出来的答案应该还要乘上\(\frac{1}{2}\)(随便猜有\(\frac{1}{2}\)的概率对,而其他的情况下猜什么是已经确定的了所以可以直接算贡献),这个比较不同所以我们考虑分开,先看那些确定的贡献
先考虑比较简单的\(n=m\)的情况:考虑一条从\((n,n)\)到\((0,0)\)的不碰到对角线的路径,这样的一种方案中所有的边的贡献都是确定的可以直接计算,会发现不管怎么走,每条路径一定会有\(n\)的贡献
那么再看\(n>m\)的情况:考虑一条从\((n,m)\)到\((0,0)\)的路径(可以经过对角线),我们按照触碰对角线的节点将这条路径划分成若干个部分,除了第一部分(也就是从\((n,m)\)走到碰到的第一个对角线上的点的这段)以外,其他部分都可以看成是从对角线上某一个点出发,中途不经过对角线,在对角线上某个点结束的一段路程,其实也就是我们的\(n=m\)的那种情况,而在第一部分中,为了触碰到对角线,一定会横着走\(n-m\)段,也就是一定会有\(n-m\)的贡献,加上前面的那些部分,每条路径一定会有\(n\)的贡献(当\(m>n\)的情况下其实一样的,类似的这个时候就是一定会有\(m\)的贡献了)
所以,我们可以得到一个结论:确定的贡献为\(max(n,m)\),接下来真正受概率影响的就只有那些对角线上的点的贡献了
而这些点的贡献其实也很好计算,只要有一条路径经过对角线上的一个点,那么不管是横着走还是竖着走的,都有\(\frac{1}{2}\)的概率获得\(1\)的贡献,所以我们只要对于对角线上面的每一个点计算经过它的方案数,然后除以总的路径数量,再乘上\(\frac{1}{2}\)即可
mark:没事把这种-1转移的二维dp丢到坐标系里面转成路径什么的好像挺有用的
代码大概长这个样子
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=5*(1e5)+10,MOD=998244353,inv2=499122177;
int fac[N*2],invfac[N*2];
int n,m;
int mul(int x,int y){return 1LL*x*y%MOD;}
int plu(int x,int y){return (1LL*x+y)%MOD;}
int C(int n,int m){return n<m?0:mul(fac[n],mul(invfac[m],invfac[n-m]));}
int calc(int n,int m){return C(n+m,m);}
int ksm(int x,int y){
int ret=1,base=x;
for (;y;y>>=1,base=mul(base,base))
if (y&1) ret=mul(ret,base);
return ret;
}
void prework(int n){
fac[0]=1;
for (int i=1;i<=n;++i) fac[i]=mul(fac[i-1],i);
invfac[n]=ksm(fac[n],MOD-2);
for (int i=n-1;i>=0;--i) invfac[i]=mul(invfac[i+1],i+1);
}
void solve(){
int ans=0;
for (int i=1;i<=min(n,m);++i)
ans=plu(ans,mul(calc(i,i),calc(n-i,m-i)));
ans=mul(ans,ksm(calc(n,m),MOD-2));
ans=mul(ans,inv2);
printf("%d\n",ans+max(n,m));
}
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d%d",&n,&m);
prework(n+m);
solve();
}
【agc019F】Yes or No的更多相关文章
- 【agc019f】AtCoder Grand Contest 019 F - Yes or No
题意 有n个问题答案为YES,m个问题答案为NO. 你只知道剩下的问题的答案分布情况. 问回答完N+M个问题,最优策略下的期望正确数. 解法 首先确定最优策略, 对于\(n<m\)的情况,肯定回 ...
- Python高手之路【六】python基础之字符串格式化
Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...
- 【原】谈谈对Objective-C中代理模式的误解
[原]谈谈对Objective-C中代理模式的误解 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这篇文章主要是对代理模式和委托模式进行了对比,个人认为Objective ...
- 【原】FMDB源码阅读(三)
[原]FMDB源码阅读(三) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 FMDB比较优秀的地方就在于对多线程的处理.所以这一篇主要是研究FMDB的多线程处理的实现.而 ...
- 【原】Android热更新开源项目Tinker源码解析系列之一:Dex热更新
[原]Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Tinker是微信的第一个开源项目,主要用于安卓应用bug的热修复和功能的迭代. Tinker github地址:http ...
- 【调侃】IOC前世今生
前些天,参与了公司内部小组的一次技术交流,主要是针对<IOC与AOP>,本着学而时习之的态度及积极分享的精神,我就结合一个小故事来初浅地剖析一下我眼中的“IOC前世今生”,以方便初学者能更 ...
- Python高手之路【三】python基础之函数
基本数据类型补充: set 是一个无序且不重复的元素集合 class set(object): """ set() -> new empty set object ...
- Python高手之路【一】初识python
Python简介 1:Python的创始人 Python (英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种解释型.面向对象.动态数据类型的高级程序设计语言,由荷兰人Guido ...
- 【开源】简单4步搞定QQ登录,无需什么代码功底【无语言界限】
说17号发超简单的教程就17号,qq核审通过后就封装了这个,现在放出来~~ 这个是我封装的一个开源项目:https://github.com/dunitian/LoTQQLogin ————————— ...
随机推荐
- XSS跨站脚本
1.反射型 非持久化,需要用户自己点击才可以触发 通常出现在搜索框 <?php $id=$_GET['id']; echo $id; ?> http://127.0.0.1/test/sc ...
- oracle数据update后怎么恢复到以前的数据
http://blog.csdn.net/itdada/article/details/52746392
- 互评Beta版本——二次元梦之队——“I Do”
基于NABCD评论作品,及改进建议 1.根据(不限于)NABCD评论作品的选题 (1)N(Need,需求) 这是一款可以教学新手入门编程的软件,不断的通关让他们慢慢学会编程,可以让没有接触过编程的人了 ...
- “学霸系统”之NABC
我们团队这次选择的是“学霸系统”客户端项目: 1.需求(need) 作为一款和网上教学问答系统具有相似功能的手机客户端,具体的功能已给出要求:用户管理.搜索.分类.上传下载.用户贡献与交互等功能. ( ...
- 作业45//Calculator::3.0
计算器 github 我的天我到底要写什么 一,2.0及2.6的改动 做了计算部分 加入了判断输入是否合法 合法的定义是算式符合`数字+运算符+数字+运算符+数字`的格式 其中`"-&quo ...
- Pytorch相关内容
---恢复内容开始--- Pytorch中文官方文档:https://pytorch-cn.readthedocs.io/zh/latest/package_references/torch-nn P ...
- iOS日期的加减
NSCalendar *calendar = [[NSCalendar alloc] initWithCalendarIdentifier:NSGregorianCalendar]; NSDateCo ...
- 第五周PSP&进度条
团队项目psp: 一.表格 C类型 C内容 S开始时间 E结束时间 I时间间隔 T净时间(mins) 预计花费时间(mins) 讨论 讨论用户界面 9:27 10:42 18 57 60 分析 ...
- [转帖]三大运营商2G/3G/4G频率分配和网络制式
三大运营商2G/3G/4G频率分配和网络制式 https://blog.csdn.net/weixin_38759340/article/details/80890142 经过二十多年长期的发展,我国 ...
- Idea使用Mybatis Generator 自动生成代码
(1)创建一个maven工程 (2)配置pom文件 <dependencies> <dependency> <groupId>mysql</groupId&g ...