fzyzojP3782 -组合数问题
这个ai<=2000有点意思
启发我们用O(W^2)的算法
FFT不存在,对应关系过紧
考虑组合意义转化建模,再进行分离
(除以2不需要逆元不懂为啥,但是算个逆元总不费事)
由于终点可能在起点的右下,所以,从左上到右下要再做一遍
但是每个终点正上方的起点统计了两次,再减掉即可
(注意大力卡常:
1.s2[i][j]没有,就不用算了
2.f,ans开long long 尽量减少取模
3.组合数用阶乘计算
)
#include<bits/stdc++.h>
#define il inline
#define reg register int
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
namespace Miracle{
const int N=+;
const int M=+;
const int mod=1e9+;
ll f[N][N];
int s1[N][N],s2[N][N];
int jie[N],inv[N];
int qm(int x,int y){
int ret=;
while(y){
if(y&) ret=(ll)ret*x%mod;
x=(ll)x*x%mod;
y>>=;
}
return ret;
}
ll mo1(ll x){
return x>=4e12?x%mod:x;
}
ll mo2(ll x){
return x>=?x%mod:x;
}
int n;
int C(int n,int m){
return (ll)jie[n]*inv[m]%mod*inv[n-m]%mod;
}
int main(){
rd(n);
int a,b;
jie[]=;
for(reg i=;i<=;++i) jie[i]=(ll)jie[i-]*i%mod;
inv[]=qm(jie[],mod-);
for(reg i=;i>=;--i) inv[i]=(ll)inv[i+]*(i+)%mod;
ll ans=;
for(reg i=;i<=n;++i){
rd(a);rd(b);
int x=a-b+,y=b+;
s1[x][y]++;
x=-a+b+,y=-b+;
s2[x][y]++;
ans=mo2(ans+mod-C(*a,*b));
}
ans%=mod;
/// cout<<ans<<endl;
for(reg i=4000;i>=1;--i){
for(reg j=;j>=;--j){
f[i][j]=mo1(f[i+][j]+f[i][j+]+s1[i][j]);
if(s2[i][j])ans=mo2(ans+(ll)f[i][j]*s2[i][j]);
}
}
ans%=mod;
// cout<<ans<<endl;
for(reg i=;i<=;++i){
for(reg j=;j>=;--j){
f[i][j]=mo1(f[i-][j]+f[i][j+]+s1[i][j]);
ans=s2[i][j]?(ans+(ll)f[i][j]*s2[i][j])%mod:ans;
s1[i][j]+=s1[i][j+];
ans=s2[i][j]?(ans-(ll)s1[i][j]*s2[i][j]+(ll)*mod)%mod:ans;
}
}
ll inv2=5e8+;
ans=ans*inv2%mod;
printf("%lld",ans);
return ;
} }
signed main(){
freopen("3782.in","r",stdin);
freopen("3782.out","w",stdout);
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2019/2/8 18:52:17
*/
总结:
核心:转化问题,分离终点和起点
和这个题的最后差分分离思路有异曲同工之处:AGC 018E.Sightseeing Plan——网格路径问题观止
fzyzojP3782 -组合数问题的更多相关文章
- AGC 018E.Sightseeing Plan——网格路径问题观止
原题链接 鸣谢:AGC 018E.Sightseeing Plan(组合 DP) 本蒟蒻认为,本题堪称网格路径问题观止. 因为涵盖了不少网格路径问题的处理方法和思路. 一句话题意: 给你三个矩形. 三 ...
- LCM性质 + 组合数 - HDU 5407 CRB and Candies
CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...
- 计算一维组合数的java实现
背景很简单,就是从给定的m个不同的元素中选出n个,输出所有的组合情况! 例如:从1到m的自然数中,选择n(n<=m)个数,有多少种选择的组合,将其输出! 本方案的代码实现逻辑是比较成熟的方案: ...
- Noip2016提高组 组合数问题problem
Day2 T1 题目大意 告诉你组合数公式,其中n!=1*2*3*4*5*...*n:意思是从n个物体取出m个物体的方案数 现给定n.m.k,问在所有i(1<=i<=n),所有j(1< ...
- C++单元测试 之 gtest -- 组合数计算.
本文将介绍如何使用gtest进行单元测试. gtest是google单元测试框架.使用非常方便. 首先,下载gtest (有些google项目包含gtest,如 protobuf),复制目录即可使用. ...
- NOIP2011多项式系数[快速幂|组合数|逆元]
题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...
- AC日记——组合数问题 落谷 P2822 noip2016day2T1
题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...
- 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...
- 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 95 Solved: 33[Submit][Statu ...
随机推荐
- Geatpy遗传算法在曲线寻优上的初步探究
园子里关于遗传算法的教案不少,但基于geatpy框架的并未多见,故分享此文以作参考,还望广大园友多多指教! Geatpy出自三所名校联合团队之手,是遗传算法领域的权威框架(python),其效率之高. ...
- passwd命令详解
基础命令学习目录首页 passwd命令用于设置用户的认证信息,包括用户密码.密码过期时间等.系统管理者则能用它管理系统用户的密码.只有管理者可以指定用户名称,一般用户只能变更自己的密码. 语法 pas ...
- Aspose.words Java基于模板生成word之循环图片
1.新建一个word文档 2.给插入图片的地方设置书签 3,设置书签 二,项目 1,2步的引入依赖以及加载授权文件同上一篇 3,获取图片路径插入到word中并生成新的word文档 新文档中,每行显示两 ...
- Daily Scrum9 11.13
昨天的任务已完成. 今日任务: 姓名 今日任务 时长 徐钧鸿 测试SQL包里的代码 2h 张艺 继续搭建还没搭建完的框架 修复bug 2h 黄可嵩 继续进行搜索响应编写 2h 徐方宇 搭建框架 修改b ...
- 团队项目-北航MOOC系统Android客户端 NABC
北航MOOC系统Android客户端 NABC (N) Need 需求 MOOC的全名是Massive Open Online Course,被称作大型开放式网络课程.2012年,美国的顶尖大学陆续设 ...
- 20172324《Java程序设计》第二周学习总结
20172324<Java程序设计>第2周学习总结 教材学习内容总结 了解了字符串及其拼接和转义序列的使用. Java的基本数据类型. 定义数据转换类型和实现其转换的方法. Scanner ...
- AbstractFactory(PeopleSkin)
使用抽象工厂模式,完成下述产品等级结构: 实现 UML类图 public class BlackFactory implements MWFactory{ public Man produceMan( ...
- struts2 Action生命周期
Struts2.0中的对象既然都是线程安全的,都不是单例模式,那么它究竟何时创建,何时销毁呢? 这个和struts2.0中的配置有关,我们来看struts.properties ### if spec ...
- 团队作业之四则运算GUI展示
一.项目Coding.net原码仓库地址:https://git.coding.net/caoying/Teamwork.git 队员: 卢琪:2016011986 曹滢:2016012102 二.P ...
- Gradle入门(3):构建第一个Java项目
Gradle插件通过引入特定领域的约定和任务来构建你的项目.Java插件是Gradle自身装载的一个插件.Java插件提供的基本功能远比源代码编译和打包多.它为你的项目建立了一个标准的项目布局,并确保 ...