解题:TJOI 2015 弦论
好像是个经典问题,然而我没做过
建SAM,然后经过每个节点的子串数目就可以求了,多个相同子串算一个的话就把所有siz都搞成$1$,否则就是$right$集合的大小,然后就是常见的递推
求第$k$小是从根节点出发按字典序沿着trans往下走,每次输出对应的字符然后扣掉对应的数量
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,M=;
int fth[M],trs[M][],len[M],siz[M];
int rnk[M],bkt[M]; long long sum[M];
int typ,kth,lth,lst,tot;
char str[N];
void Insert(int ch)
{
int nde=lst,newn=++tot; lst=newn;
siz[newn]=,len[newn]=len[nde]+;
while(nde&&!trs[nde][ch])
trs[nde][ch]=newn,nde=fth[nde];
if(!nde)
fth[newn]=;
else
{
int tran=trs[nde][ch];
if(len[tran]==len[nde]+)
fth[newn]=tran;
else
{
int rnde=++tot; len[rnde]=len[nde]+;
for(int i=;i<=;i++) trs[rnde][i]=trs[tran][i];
fth[rnde]=fth[tran],fth[tran]=fth[newn]=rnde;
while(nde&&trs[nde][ch]==tran)
trs[nde][ch]=rnde,nde=fth[nde];
}
}
}
int main()
{
register int i,j,k;
scanf("%s%d%d",str+,&typ,&kth);
lth=strlen(str+),lst=tot=;
for(i=;i<=lth;i++) Insert(str[i]-'a');
for(i=;i<=tot;i++) bkt[len[i]]++;
for(i=;i<=lth;i++) bkt[i]+=bkt[i-];
for(i=;i<=tot;i++) rnk[bkt[len[i]]--]=i;
for(i=tot;i;i--)
j=rnk[i],typ?siz[fth[j]]+=siz[j]:siz[j]=;
siz[]=;
for(i=tot;i;i--)
{
j=rnk[i],sum[j]=siz[j];
for(k=;k<=;k++)
if(trs[j][k]) sum[j]+=sum[trs[j][k]];
}
if(kth>sum[]) printf("-1");
else
{
int nde=;
while(kth-siz[nde]>)
{
kth-=siz[nde];
for(i=;i<=&&kth>sum[trs[nde][i]];i++)
kth-=sum[trs[nde][i]];
nde=trs[nde][i],printf("%c",i+'a');
}
}
return ;
}
解题:TJOI 2015 弦论的更多相关文章
- BZOJ 3998 [TJOI 2015] 弦论 解题报告
这是一道后缀自动机经典题目. 对于 $t=0$ 的情况:每个节点都代表一个子串,所以我们给每个节点的 $Size$ 都记为 $1$, 对于 $t=1$ 的情况:我们只给 $last$ 节点的 $Siz ...
- BZOJ 3997 [TJOI 2015 组合数学] 解题报告
这个题我脑洞了一个结论: 首先,我们定义满足以下条件的路径为“从右上到左下的路径”: 对于路径上任何不相同的两个点 $(x_1, y_1)$,$(x_2, y_2)$,都有: $x_1\neq x_2 ...
- BZOJ 3996 [TJOI 2015] 线性代数 解题报告
首先,我们可以得到: $$D = \sum_{i=1}^{n}\sum_{j=1}^{n}a_i\times a_j\times b_{i,j} - \sum_{i=1}^{n}a_i\times c ...
- 解题:TJOI 2015 组合数学
题面 通过这个题理解了一下反链的概念,更新在图论知识点里了 每个点向右和下连边可以建出一张图,这个题事实上是让我们求图的最小链覆盖.Dilworth定理告诉我们,最小链覆盖等于最长反链(反链:DAG中 ...
- TJOI 2015 概率论(生成函数)
题意 求一棵随机生成的有根二叉树(节点无标号,各种不同构的情况随机出现)叶子结点个数的期望. 思路 用生成函数做是个好题. 我们考虑设 \(n\) 个节点,所有不同构二叉树叶子结点的总和为 ...
- 后缀自动机(SAM)奶妈式教程
后缀自动机(SAM) 为了方便,我们做出如下约定: "后缀自动机" (Suffix Automaton) 在后文中简称为 SAM . 记 \(|S|\) 为字符串 \(S\) 的长 ...
- 2015 Multi-University Training Contest 6 solutions BY ZJU(部分解题报告)
官方解题报告:http://bestcoder.hdu.edu.cn/blog/2015-multi-university-training-contest-6-solutions-by-zju/ 表 ...
- [NOIP 2015]运输计划-[树上差分+二分答案]-解题报告
[NOIP 2015]运输计划 题面: A[NOIP2015 Day2]运输计划 时间限制 : 20000 MS 空间限制 : 262144 KB 问题描述 公元 2044 年,人类进入了宇宙纪元. ...
- 洛谷 P3975 [TJOI2015]弦论 解题报告
P3975 [TJOI2015]弦论 题目描述 为了提高智商,ZJY开始学习弦论.这一天,她在<String theory>中看到了这样一道问题:对于一个给定的长度为\(n\)的字符串,求 ...
随机推荐
- AlexNet——ImageNet Classification with Deep Convolutional Neural Networks
1. 摘要 本文的模型采用了 5 层的卷积,一些层后面还紧跟着最大池化层,和 3 层的全连接,最后是一个 1000 维的 softmax 来进行分类. 为了减少过拟合,在全连接层采取了 dropout ...
- ef5 数据库操作
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- jdk10 var定义变量的由来
百家号03-1714:11 题图:by jordhammond from instagram 本文选自聊聊架构公众号,略有修改 以前我们 Java 程序员经常会对其他语言中的 var 关键字耿耿于怀, ...
- 第十一次PSP
- 互评beta版本 - hello word!【空天猎】
基于NABCD评论作品 1.Need需求:市面上同类型的手机及PC端飞行射击类游戏有很多,所以从需求方面来说,这款游戏的潜在客户非常有局限性.近些年较火的飞行射击类游戏,例如腾讯14年发行的<全 ...
- Daily scrum 2015.10.19
这周是我们团队项目开始的第一周.我们的团队项目是“北航社团平台”,一个致力于打造北航社团资讯整合.社团工作服务与社团商品销售的一站式网络平台. 一.会议内容 1. 总体分工,江昊同学担任项目PM,王若 ...
- java(系统)实战1
在简单学习了java的布局和一些界面的绘制方法后,我便开始有了跟着视频和书本的知识学做一个简单的餐饮系统,才能激发自己的编程和不断巩固知识. 我简单说明一下本次做的系统很普通但具有实用性,是通过jav ...
- Alpha版会议总结
目前的进度: 实现了文字备忘的录入: 实现了提醒功能: 实现了可视化界面: 语音录入功能还没有完成: 界面相当粗糙: 遇到的问题: 语音录入按钮按下后没有反应,目前没有解决思路和方法. 原本的解屏功能 ...
- Java script 中的面向对象1
Java script 中的面向对象 对象 对象是Javascript的基本数据类型,对象是一种复合值,将很多的键值对聚合在一起使用.对象可看做是属性的无序集合,每个属性都是一个名/值对.属性名其实是 ...
- 一键轻松查看apk包名和Main Activity
环境 Windows系统(我的是Win10 64位) Python3(我的是3.6.1) 已安装Git 安装 pip install git+https://github.com/codeskyblu ...