解题:TJOI 2015 弦论
好像是个经典问题,然而我没做过
建SAM,然后经过每个节点的子串数目就可以求了,多个相同子串算一个的话就把所有siz都搞成$1$,否则就是$right$集合的大小,然后就是常见的递推
求第$k$小是从根节点出发按字典序沿着trans往下走,每次输出对应的字符然后扣掉对应的数量
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,M=;
int fth[M],trs[M][],len[M],siz[M];
int rnk[M],bkt[M]; long long sum[M];
int typ,kth,lth,lst,tot;
char str[N];
void Insert(int ch)
{
int nde=lst,newn=++tot; lst=newn;
siz[newn]=,len[newn]=len[nde]+;
while(nde&&!trs[nde][ch])
trs[nde][ch]=newn,nde=fth[nde];
if(!nde)
fth[newn]=;
else
{
int tran=trs[nde][ch];
if(len[tran]==len[nde]+)
fth[newn]=tran;
else
{
int rnde=++tot; len[rnde]=len[nde]+;
for(int i=;i<=;i++) trs[rnde][i]=trs[tran][i];
fth[rnde]=fth[tran],fth[tran]=fth[newn]=rnde;
while(nde&&trs[nde][ch]==tran)
trs[nde][ch]=rnde,nde=fth[nde];
}
}
}
int main()
{
register int i,j,k;
scanf("%s%d%d",str+,&typ,&kth);
lth=strlen(str+),lst=tot=;
for(i=;i<=lth;i++) Insert(str[i]-'a');
for(i=;i<=tot;i++) bkt[len[i]]++;
for(i=;i<=lth;i++) bkt[i]+=bkt[i-];
for(i=;i<=tot;i++) rnk[bkt[len[i]]--]=i;
for(i=tot;i;i--)
j=rnk[i],typ?siz[fth[j]]+=siz[j]:siz[j]=;
siz[]=;
for(i=tot;i;i--)
{
j=rnk[i],sum[j]=siz[j];
for(k=;k<=;k++)
if(trs[j][k]) sum[j]+=sum[trs[j][k]];
}
if(kth>sum[]) printf("-1");
else
{
int nde=;
while(kth-siz[nde]>)
{
kth-=siz[nde];
for(i=;i<=&&kth>sum[trs[nde][i]];i++)
kth-=sum[trs[nde][i]];
nde=trs[nde][i],printf("%c",i+'a');
}
}
return ;
}
解题:TJOI 2015 弦论的更多相关文章
- BZOJ 3998 [TJOI 2015] 弦论 解题报告
这是一道后缀自动机经典题目. 对于 $t=0$ 的情况:每个节点都代表一个子串,所以我们给每个节点的 $Size$ 都记为 $1$, 对于 $t=1$ 的情况:我们只给 $last$ 节点的 $Siz ...
- BZOJ 3997 [TJOI 2015 组合数学] 解题报告
这个题我脑洞了一个结论: 首先,我们定义满足以下条件的路径为“从右上到左下的路径”: 对于路径上任何不相同的两个点 $(x_1, y_1)$,$(x_2, y_2)$,都有: $x_1\neq x_2 ...
- BZOJ 3996 [TJOI 2015] 线性代数 解题报告
首先,我们可以得到: $$D = \sum_{i=1}^{n}\sum_{j=1}^{n}a_i\times a_j\times b_{i,j} - \sum_{i=1}^{n}a_i\times c ...
- 解题:TJOI 2015 组合数学
题面 通过这个题理解了一下反链的概念,更新在图论知识点里了 每个点向右和下连边可以建出一张图,这个题事实上是让我们求图的最小链覆盖.Dilworth定理告诉我们,最小链覆盖等于最长反链(反链:DAG中 ...
- TJOI 2015 概率论(生成函数)
题意 求一棵随机生成的有根二叉树(节点无标号,各种不同构的情况随机出现)叶子结点个数的期望. 思路 用生成函数做是个好题. 我们考虑设 \(n\) 个节点,所有不同构二叉树叶子结点的总和为 ...
- 后缀自动机(SAM)奶妈式教程
后缀自动机(SAM) 为了方便,我们做出如下约定: "后缀自动机" (Suffix Automaton) 在后文中简称为 SAM . 记 \(|S|\) 为字符串 \(S\) 的长 ...
- 2015 Multi-University Training Contest 6 solutions BY ZJU(部分解题报告)
官方解题报告:http://bestcoder.hdu.edu.cn/blog/2015-multi-university-training-contest-6-solutions-by-zju/ 表 ...
- [NOIP 2015]运输计划-[树上差分+二分答案]-解题报告
[NOIP 2015]运输计划 题面: A[NOIP2015 Day2]运输计划 时间限制 : 20000 MS 空间限制 : 262144 KB 问题描述 公元 2044 年,人类进入了宇宙纪元. ...
- 洛谷 P3975 [TJOI2015]弦论 解题报告
P3975 [TJOI2015]弦论 题目描述 为了提高智商,ZJY开始学习弦论.这一天,她在<String theory>中看到了这样一道问题:对于一个给定的长度为\(n\)的字符串,求 ...
随机推荐
- Flink HA
standalone 模式的高可用 部署 flink 使用zookeeper协调多个运行的jobmanager,所以要启用flink HA 你需要把高可用模式设置成zookeeper,配置zookee ...
- Windows下的ROUGE文本测评工具基本安装
需要的安装包: rouge1.5.5:https://pan.baidu.com/s/1B7-LYn1lZKC8f51yXxNK9w Strawberry Perl :http://strawberr ...
- GTK 预置对话框 GtkDialog 文件/颜色/字体选取等 GtkFileSelection
(GTK2) 文档链接 作用:打开一个预置的对话框,如文件选取对话框 GtkFileSelection 效果下图所示 ╰── GtkDialog ├── GtkAboutDialog ├── GtkC ...
- cp命令详解
基础命令学习目录首页 http://man.linuxde.net/cp 如果把一个文件复制到一个目标文件中,而目标文件已经存在,那么,该目标文件的内容将被破坏.此命令中所有参数既可以是绝对路径名,也 ...
- iOS - Bundle 资源文件包生成和常见资源文件使用
1.Bundle 文件 Bundle 文件,就是资源文件包.我们将许多图片.XIB.文本文件组织在一起,打包成一个 Bundle 文件.方便在其他项目中引用包内的资源. Bundle 文件是静态的,也 ...
- 一个demo 理解 vuex
相比接触vue的同学们已经看了官方文档了.这里我用一个简单的demo来阐述下vuex的知识点,虽然简单,但是容易理解.也加深自己的记忆. 用脚手架建立个项目vue init webpakc-simpl ...
- 感谢Thunder团队
不知不觉中,团队开发的beta版本都已经结束.开发的路上我们一起解决了很多难题,相互帮助走到了现在. 首先我想感谢组长王航.认真负责合理分配任务,使得我们每次发布都可以顺利并且按时完成.感谢胡佑蓉,李 ...
- Teamwork(The fourth day of the team)
在这天我们已经开始去做自己手上的的任务.由于我们都忙于手头上的工作,所以这天我们就没有过多的交流,有的可能就是网上说一下实现到了哪里.
- bug排查
有时候让朋友,或者群友,或者同事帮忙看一样困扰你很久的bug会得到意向不到的结果. 因为他们往往不像你,已经在调试代码的过程中被一些东西给束缚了.他们会凭借自己的第一直觉来尝试解决问题,跳过你已经走的 ...
- Ubuntu下tensorboard的使用
1. 找到运行程序的事件输出路径 找到路径并进入,例如我的是在路径/home/ly/codes下: 2. 打开tensorboard服务器 在终端输入(--logdir=自己所存的路径): t ...