【算法学习】老算法,新姿势,STL——Heap
“堆”是一个大家很熟悉的数据结构,它可以在\(O(log\;n)\)的时间内维护集合的极值。
这都是老套路了,具体的内部实现我也就不谈了。
我一般来说,都是用queue库中的priority_queue,也就是STL的优先队列来实现堆的,然而最近我发现了一个新的STL容器,它相对优先队列有着更小的常数和更方便的操作。
它就是heap,就是堆。
关于heap,STL提供了4个函数,它们都定义于algorithm库中。它们分别是:
建立堆:
make_heap(_First, _Last, _Cmp)
在堆中添加元素:
push_heap(_First, _Last, _Cmp)
要先添加元素,再调用函数。
在堆中删除元素:
pop_heap(_First, _Last, _Cmp)
要先调用函数,再删除(不删也可以,只要保证不会出现内存泄漏或者其它bug)。
堆排序:
sort_heap(_First, _Last, _Cmp)
排完序,就像普通的sort一样了,变成有序数组了。不再具有堆的性质。
与sort一样,其中_First,_Last都是头,尾指针或迭代器(对应vector或queue),而_Cmp表示了元素间的大小关系函数。
类似sort,堆中的元素是[_First, _Last)的区间,若内存不连续,也至少要是可随机访问的迭代器(如vector)。
其中_Cmp不是必要的,但是如果有定义_Cmp,一般情况下所有函数都需要加上_Cmp。
还需注意这些函数维护的均是大根堆(即父亲值比孩子大的堆,也称最大堆)。
【算法学习】老算法,新姿势,STL——Heap的更多相关文章
- 【STL源码学习】STL算法学习之一
第一章:引子 STL包含的算法头文件有三个:<algorithm><numeric><functional>,其中最大最常用的是<algorithm>, ...
- STL——heap结构及算法
heap(隐式表述,implicit representation) 1. heap概述 : vector + heap算法 heap并不归属于STL容器组件,它是个幕后英雄,扮演priority q ...
- STL -- heap结构及算法
STL -- heap结构及算法 heap(隐式表述,implicit representation) 1. heap概述 : vector + heap算法 heap并不归属于STL容器组件,它是个 ...
- STL学习笔记--算法
关于STL算法需要注意的是: (1) 所有STL算法被设计用来处理一个或多个迭代器区间.第一个区间通常以起点和终点表示,至于其他区间,多数情况下只需提供起点即可,其终点可自动以第一区间的元素数推导出来 ...
- <2014 05 09> Lucida:我的算法学习之路
[转载] 我的算法学习之路 关于 严格来说,本文题目应该是我的数据结构和算法学习之路,但这个写法实在太绕口——况且CS中的算法往往暗指数据结构和算法(例如算法导论指的实际上是数据结构和算法导论),所以 ...
- python常用算法学习(3)
1,什么是算法的时间和空间复杂度 算法(Algorithm)是指用来操作数据,解决程序问题的一组方法,对于同一个问题,使用不同的算法,也许最终得到的结果是一样的,但是在过程中消耗的资源和时间却会有很大 ...
- 【2018.07.28】(字符串/回文串)学习Manacher算法小记
主要是应用在回文串啦,原理也理解了老半天,如果没有图片的话,我也看不太懂它的原理 学习的灵感来源来自于:https://segmentfault.com/a/1190000008484167 /* 最 ...
- Unity实现A*寻路算法学习2.0
二叉树存储路径节点 1.0中虽然实现了寻路的算法,但是使用List<>来保存节点性能并不够强 寻路算法学习1.0在这里:https://www.cnblogs.com/AlphaIcaru ...
- 算法学习:并行化初体验_JAVA实现并行化归并算法
这个系列包括算法导论学习过程的记录. 最初学习归并算法,对不会使其具体跑在不同的核上报有深深地怨念,刚好算倒重温了这个算法,闲来无事,利用java的thread来体验一下并行归并算法.理论上开的thr ...
随机推荐
- 对\${ctx}的一点理解
一.\${ctx}与${pageContext.request.contextPath}的区别 相同点: \${ctx}和\${pageContext.request.contextPath}都是获取 ...
- Java pdf转String 并修正格式
在尝试pdf转成String的时候,首先用python的pdfminer和pdfminer3k去尝试转换,然后资料看不太懂,就尝试用了java, 以下是java的pdfbox写的pdf转String函 ...
- 【agc023E】Inversions(线段树,动态规划)
[agc023E]Inversions(线段树,动态规划) 题面 AT 给定\(a_i\),求所有满足\(p_i\le a_i\)的排列\(p\)的逆序对数之和. 题解 首先如何计算排列\(p\)的个 ...
- 【BZOJ1858】序列操作(线段树)
[BZOJ1858]序列操作(线段树) 题面 BZOJ 题解 这题思路很简单,细节很烦,很码 维护区间翻转和区间赋值标记 当打到区间赋值标记时直接覆盖掉翻转标记 下放标记的时候先放赋值标记再放翻转标记 ...
- Linux内核分析期中知识点总结
Linux内核分析期中知识点总结 1. 计算机是如何工作的 存储程序计算机工作模型:冯诺依曼体系结构 X86汇编基础 会变一个简单的C程序分析其汇编指令执行过程 2. 操作系统是如何工作的 函数调用堆 ...
- npm publish gives “unscoped packages cannot be private”
解决方法: npm publish --access public 详细参考此处
- 解题:AHOI2017/HNOI2017 礼物
题面 先不管旋转操作,只考虑增加亮度这个操作.显然这个玩意的影响是相对于$x,y$固定的,所以可以枚举增加的亮度然后O(1)算出来.为了方便我们把这个操作换种方法表示,只让一个手环改变$[-m,m]$ ...
- 微服务Kong(八)——代理参考
Kong侦听四个端口的请求,默认情况是: 8000:此端口是Kong用来监听来自客户端的HTTP请求的,并将此请求转发到您的上游服务.这也是本教程中最主要用到的端口. 8443:此端口是Kong监听H ...
- Chapter 3(线性表)
1.单链表 //单链表代码,手打纯手工 //***********************************link.h*********************************** # ...
- 【Asp.net入门5-05】设置Web窗体列表的样式