这学期学《人工智能》(马少平,朱小燕 编著)这本书,里面很多算法听老师讲都听不懂,就想试试写一下看看能不能写出来,就从最简单的回溯策略开始吧。

源码


题目描述

在一个n*n的国际象棋棋盘上,一次一次地摆布n枚皇后,摆好后要满足每行、每列和对角线上只允许出现一枚棋子,即棋子间不许互相俘获。

解题思路

使用用递归的方式实现回溯,每一行从左到右填,填不下去就回溯到上一行。

以四皇后为例

代码实现

递归函数,如果能放下皇后且还没到最后一行,递归进入下一行。


void Nqueens(int num)
{
int i;
for(i=1;i<=n;i++)
{
queen[num]=i;
if(CanPlace(queen,num))
{
if(num==n)
Output();
else
Nqueens(num+1);
}
}
}

判断是否能放皇后,可以把已经放下的和现在放的相比,因为我是一行一行填,所以只要判断列和对角线有没有重复。用一个queen数组记录每行的皇后放的位置,行减行的绝对值和位置减位置的绝对值相等时在同一对角线,位置相等时在同一列。


bool CanPlace(int queen[],int num)
{
int i;
for(i=1;i<num;i++)
{
if(abs(queen[i]-queen[num])==abs(i-num) || queen[i]==queen[num])
return false;
}
return true;
}

性能分析

耗时最多的是取绝对值函数,如果能找到比用绝对值更好的判断方法,程序就能更快。

总结

回溯策略是盲目搜索的一种,而用递归法是最直接的实现方法,处理皇后问题效率还不错,后面可能会写写启发式搜索(看得懂的话就写)。

人工智能——搜索(1)回溯策略【N皇后问题】的更多相关文章

  1. 回溯算法————n皇后、素数串

    回溯就是算法是搜索算法中一种控制策略,是一个逐个试探的过程.在试探的过程中,如果遇到错误的选择,就会回到上一步继续选择下一种走法,一步一步的进行直到找到解或者证明无解为止. 如下是一个经典回溯问题n皇 ...

  2. LeetCode 31:递归、回溯、八皇后、全排列一篇文章全讲清楚

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天我们讲的是LeetCode的31题,这是一道非常经典的问题,经常会在面试当中遇到.在今天的文章当中除了关于题目的分析和解答之外,我们还会 ...

  3. 回溯算法 - n 皇后问题

    (1)问题描述 在 n × n 格的棋盘上放置彼此不受攻击的 n 个皇后.按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子.n 后问题等价于在 n × n 的棋盘上放置 n 个 ...

  4. 【回溯】n皇后问题

    问题 U: [回溯]n皇后问题 时间限制: 1 Sec  内存限制: 128 MB提交: 4  解决: 4[提交][状态][讨论版] 题目描述 在一个国际象棋棋盘上,放置n个皇后(n<10),使 ...

  5. LeetCode DFS搜索与回溯专题

    DFS + 回溯专题 17. 电话号码的字母组合 迭代也可以实现搜索 循环改写dfs搜索的写法: 例如 C++写法 class Solution { public: vector<string& ...

  6. HDU(搜索专题) 1000 N皇后问题(深度优先搜索DFS)解题报告

    前几天一直在忙一些事情,所以一直没来得及开始这个搜索专题的训练,今天做了下这个专题的第一题,皇后问题在我没有开始接受Axie的算法低强度训练前,就早有耳闻了,但一直不知道是什么类型的题目,今天一看,原 ...

  7. ACM:回溯,八皇后问题,素数环

    (一)八皇后问题 (1)回溯 #include <iostream> #include <string> #define MAXN 100 using namespace st ...

  8. 【Python】生成器、回溯和八皇后问题

    八皇后问题: 把N个皇后,放在N*N的棋盘上面,从第一行往下放,每个皇后占一行,同时,每个皇后不能处在同一列,对角线上,有多少种放置方法. 思路: 典型的回溯问题: 1.当要放置最后一个皇后时候,默认 ...

  9. 回溯法 | n皇后问题

    今早上看了一篇英语阅读之后,莫名有些空虚寂寞冷.拿出算法书,研读回溯法.我觉得n皇后问题完全可以用暴力方式,即先对n个数进行全排列,得到所有结果的下标组合,问题规模为n!. 全排列花了比较久的时间才编 ...

随机推荐

  1. 云存储(Swift+Keystone)部署策略

    Swift是OpenStack的对象存储模块,Keystone是OpenStack的权限验证模块.可以于这两个模块搭建一个较为完善的云存储系统. 1.官方方案 云存储的服务器分三种类型: 验证节点 A ...

  2. mybatis 小结

    1.  根据后台list 在SQL中使用到In的时候 <if test="sbidList != null and sbidList.size() > 0"> A ...

  3. val();html();.text()区别

    对于innerHTML 属性,几乎所有的元素都有innerHTML属性,它是一个字符串,用来设置或获取位于对象起始和结束标签内的HTML.(获取HTML当前标签的起始和结束里面的内容) 对于inner ...

  4. Node.js 常用工具util包

    Node.js 常用工具 util 是一个Node.js 核心模块,提供常用函数的集合,用于弥补核心JavaScript 的功能 过于精简的不足. util.isError(obj); util.is ...

  5. 【转】解决IDEA新建项目名称为红色

    idea如果当前project用了版本控制器,其下面新建的所有的项目默认都是加入到版本控制里面,所以项目名称和文件都是红色的,如图: File-->Settings-->version c ...

  6. 统计SQL Server所有表记录数

    SELECT SCHEMA_NAME(t.schema_id) AS [schema] ,t.name AS tableName ,i.rows AS [rowCount] FROM sys.tabl ...

  7. centos 快速安装wordpress

    1.两种方式得到Wordpress 首先你可以去wordpress官方网站看下最新的wordpress的下载地址多少.比如wordpress 3.9.1的下载地址是: http://cn.wordpr ...

  8. nginx的启动和关闭

    nginx的启动和关闭nginx -h 查看帮助信息nginx -v 查看Nginx的版本号nginx -V 显示Nginx的版本号和编译信息start nginx 启动Nginxnginx -s s ...

  9. Https之SSL原理

    一.HTTPS和SSL HTTP(Hyper TEXT Transfer Protocol超文本传输协议)是目前互联网上应用最为广泛的一种网络协议,用于在Web浏览器和网站服务器之间传递信息,但是HT ...

  10. Jquery对于input事件的处理

    Jquery对于input事件的处理.获取此表单元素,以及其内容 .text()不能使用在表单选项上 要使用.val() input元素使用类似onblur(this),事件在function(obj ...