FunDA(11)- 数据库操作的并行运算:Parallel data processing
FunDA最重要的设计目标之一就是能够实现数据库操作的并行运算。我们先重温一下fs2是如何实现并行运算的。我们用interleave、merge、either这几种方式来同时处理两个Stream里的元素。interleave保留了固定的交叉排列顺序,而merge和either则会产生不特定顺序,这个现象可以从下面的例子里看到:
implicit val strategy = Strategy.fromFixedDaemonPool() implicit val scheduler = Scheduler.fromFixedDaemonPool() //当前元素跟踪显示
def log[A](pre: String): Pipe[Task,A,A] = _.evalMap { row =>
Task.delay {println(s"${pre}>${row}");row}
}
def randomDelay[A](max: FiniteDuration): Pipe[Task,A,A] = _.evalMap { a => {
val delay: Task[Int] = Task.delay {scala.util.Random.nextInt(max.toMillis.toInt)}
delay.flatMap {d => Task.now(a).schedule(d.millis)}
}
} val s1: Stream[Task,Int] = Stream(,,,,).through(randomDelay(.millis)) val s2 = Stream(,,,,,).through(randomDelay(.millis)) val s3: Stream[Task,String] = Stream("a","b","c").through(randomDelay(.millis)) (s1 interleave s2).through(log("")).run.unsafeRun //> >1
//| >11
//| >2
//| >22
//| >3
//| >33
//| >4
//| >44
//| >5
//| >55 (s1 merge s2).through(log("")).run.unsafeRun //> >11
//| >1
//| >22
//| >2
//| >33
//| >44
//| >3
//| >55
//| >4
//| >5
//| >66
(s1 either s3).through(log("")).run.unsafeRun //> >Left(1)
//| >Left(2)
//| >Right(a)
//| >Right(b)
//| >Left(3)
//| >Left(4)
//| >Left(5)
//| >Right(c)
从上面的例子我们可以看到merge产生的不规则顺序。fs2的nondeterministic算法可以保证两个队列元素处理顺序的合理分配最大化。如果我们需要对两个以上数据流进行并行处理的话,fs2提供了join(mergeN)函数:
def join[F[_],O](maxOpen: Int)(outer: Stream[F,Stream[F,O]])(implicit F: Async[F]): Stream[F,O] = {...}
从这个函数的款式我们看到它的入参数outer是个Stream[F,Stream[F,O]]类型,是个内外两层的流。现实场景如外层是多个数据库连接(connections),内层是多个客户端(clients)。在FunDA的功能描述里外层是多个数据源(sources),内层是多个读取函数(reader),又或者外层是多个数据行(元素),内层是数据处理函数。我们先看看如何实现多个数据源的并行产生:
val ss: Stream[Task,Stream[Task,Int]] = Stream(s1,s2,s1,s2)
//> ss : fs2.Stream[fs2.Task,fs2.Stream[fs2.Task,Int]] = Segment(Emit(Chunk(Seg
从ss的类型款式来看,我们可以直接用Stream构建器来生成这个Stream[Task,Stream[Task,A]]类型。在前面我们已经掌握了用Slick来产生Stream[Task,FDAROW]的方法,例如:
val albumStream1 = streamLoader.fda_typedStream(albumsInfo.result)(db)(.minutes, , )()()
albumStream1是个Reactive-Stream数据源。这样我们可以在FunDA里增加一个并行Source构建函数:
def fda_par_load(sources: FDAPipeLine[FDAROW]*)(maxOpen: Int) = {
concurrent.join(maxOpen)(Stream(sources: _*))
}
maxOpen代表最多可以同时运行的运算数,最好取小于机器内核数的一个数。用这个函数来并行构建数据源:
package com.bayakala.funda.fdapars.examples
import slick.driver.H2Driver.api._
import com.bayakala.funda.samples._
import com.bayakala.funda.fdarows.FDAROW
import com.bayakala.funda.fdasources.FDADataStream._
import scala.concurrent.duration._
import com.bayakala.funda.fdapipes._
import FDAValves._
import com.bayakala.funda.fdapars.FDAPars._
object Example1 extends App {
val albums = SlickModels.albums
val companies = SlickModels.companies //数据源query
val albumsInfo = for {
(a,c) <- albums join companies on (_.company === _.id)
} yield (a.title,a.artist,a.year,c.name) //query结果强类型(用户提供)
case class Album(title: String, artist: String, year: Int, publisher: String) extends FDAROW
//强类型转换函数(用户提供)
def toTypedRow(row: (String, String, Option[Int], String)): Album =
Album(row._1, row._2, row._3.getOrElse(), row._4) val db = Database.forConfig("h2db") val streamLoader = FDAStreamLoader(slick.driver.H2Driver, toTypedRow _)
val albumStream1 = streamLoader.fda_typedStream(albumsInfo.result)(db)(.minutes, , )()()
val albumStream2 = streamLoader.fda_typedStream(albumsInfo.result)(db)(.minutes, , )()()
val albumStream3 = streamLoader.fda_typedStream(albumsInfo.result)(db)(.minutes, , )()() def printAlbums: FDATask[FDAROW] = row => {
row match {
case album: Album =>
println("____________________")
println(s"品名:${album.title}")
println(s"演唱:${album.artist}")
println(s"年份:${album.year}")
println(s"发行:${album.publisher}") fda_skip
// fda_next(album)
case r@_ => fda_next(r)
}
} fda_par_load(albumStream1,albumStream1,albumStream1)().appendTask(printAlbums).startRun
startRun后显示结果:
*** (c.z.hikari.HikariDataSource) HikariCP pool h2db is starting.
*** (s.jdbc.JdbcBackend.statement) Preparing statement: select x2."TITLE", x2."ARTIST", x2."YEAR", x3."NAME" from "ALBUMS" x2, "COMPANY" x3 where x2."COMPANY" = x3."ID"
*** (s.jdbc.JdbcBackend.statement) Preparing statement: select x2."TITLE", x2."ARTIST", x2."YEAR", x3."NAME" from "ALBUMS" x2, "COMPANY" x3 where x2."COMPANY" = x3."ID"
*** (s.jdbc.JdbcBackend.statement) Preparing statement: select x2."TITLE", x2."ARTIST", x2."YEAR", x3."NAME" from "ALBUMS" x2, "COMPANY" x3 where x2."COMPANY" = x3."ID"
____________________
品名:Keyboard Cat's Greatest Hits
演唱:Keyboard Cat
年份:
发行:Sony Music Inc
____________________
品名:Keyboard Cat's Greatest Hits
演唱:Keyboard Cat
年份:
发行:Sony Music Inc
____________________
品名:Keyboard Cat's Greatest Hits
演唱:Keyboard Cat
年份:
发行:Sony Music Inc
____________________
品名:Spice
演唱:Spice Girls
年份:
发行:Columbia Records
____________________
品名:Spice
演唱:Spice Girls
年份:
发行:Columbia Records
____________________
品名:Spice
演唱:Spice Girls
年份:
发行:Columbia Records
____________________
品名:Whenever You Need Somebody
演唱:Rick Astley
年份:
发行:Sony Music Inc
____________________
品名:Whenever You Need Somebody
演唱:Rick Astley
年份:
发行:Sony Music Inc
____________________
品名:Whenever You Need Somebody
演唱:Rick Astley
年份:
发行:Sony Music Inc
____________________
品名:The Triumph of Steel
演唱:Manowar
年份:
发行:The K-Pops Singers
____________________
品名:The Triumph of Steel
演唱:Manowar
年份:
发行:The K-Pops Singers
____________________
品名:The Triumph of Steel
演唱:Manowar
年份:
发行:The K-Pops Singers
____________________
品名:Believe
演唱:Justin Bieber
年份:
发行:Columbia Records
____________________
品名:Believe
演唱:Justin Bieber
年份:
发行:Columbia Records
____________________
品名:Believe
演唱:Justin Bieber
年份:
发行:Columbia Records Process finished with exit code
FunDA的另一个并行运算需求是并行对一长串数据元素进行一个函数的施用。先看看这个函数的款式:
//作业类型
type FDATask[ROW] = ROW => Option[List[ROW]]
也就是我们前面使用过的,由用户提供的那个作业函数类型。但是再看看fda_runPar函数,只能对下面这种类型进行并行运算:
def fda_runPar(parTask: FDAParTask)(maxOpen: Int) =
concurrent.join(maxOpen)(parTask).through(fda_afterPar) //并行作业类型
type FDAParTask = Stream[Task,Stream[Task,Option[List[FDAROW]]]]
我们首先必须把Stream[Task,A]转成Stream[Task,Stream[Task,A]]:
implicit class toFDAOps(fs2Stream: FDAPipeLine[FDAROW]) {
def appendTask(t: FDATask[FDAROW]) = fs2Stream.through(fda_execUserTask(t)) def startRun = fs2Stream.run.unsafeRun def startFuture = fs2Stream.run.unsafeRunAsyncFuture def toPar(st: FDATask[FDAROW]): Stream[Task, Stream[Task, Option[List[FDAROW]]]] =
fs2Stream.map { row =>
Stream.eval(Task {
st(row)
})
}
}
我们可以用toPar来实现并行运算类型转换。下面是一个调用例子:
//并行作业函数
def updateYear: FDATask[FDAROW] = row => {
row match {
case album: Album =>
val action = albums.filter{r => r.title === album.title}.map(_.year).update(Some())
//把原数据和新构建的Action一起传下去
fda_next(List(album,FDAActionRow(action)))
case others@ _ => fda_next(others)
}
} //并行读取
val s1 = fda_par_load(albumStream1,albumStream1,albumStream1)()
//并行构建Action
val s2 = fda_runPar(s1.toPar(updateYear))()
s1是并行构建的数据源,s2是对数据源产生的元素进行并行的函数updateYear施用。我们同样可以把产生的ActionRow用并行的方法来运算:
val runner = FDAActionRunner(slick.driver.H2Driver)
//并行运算函数
def runActions: FDATask[FDAROW] = row => {
row match {
case FDAActionRow(action) =>
runner.fda_execAction(action)(db)
fda_skip
case others@ _ => fda_next(others)
}
} //并行运算Action
val s3 = fda_runPar(s2.toPar(runActions))()
//开始运算
s3.appendTask(printAlbums).startRun
从上面的例子里应该能够体会到函数式编程的灵活性:在startRun之前,我们可以任意进行函数组合,而且静态类型系统(static type system)会帮我们检查各组件的类型是否匹配。下面是具体运算结果显示:
*** (c.z.hikari.HikariDataSource) HikariCP pool h2db is starting.
*** (s.jdbc.JdbcBackend.statement) Preparing statement: select x2."TITLE", x2."ARTIST", x2."YEAR", x3."NAME" from "ALBUMS" x2, "COMPANY" x3 where x2."COMPANY" = x3."ID"
*** (s.jdbc.JdbcBackend.statement) Preparing statement: select x2."TITLE", x2."ARTIST", x2."YEAR", x3."NAME" from "ALBUMS" x2, "COMPANY" x3 where x2."COMPANY" = x3."ID"
*** (s.jdbc.JdbcBackend.statement) Preparing statement: select x2."TITLE", x2."ARTIST", x2."YEAR", x3."NAME" from "ALBUMS" x2, "COMPANY" x3 where x2."COMPANY" = x3."ID"
*** (s.jdbc.JdbcBackend.statement) Preparing statement: update "ALBUMS" set "YEAR" = ? where "ALBUMS"."TITLE" = 'Keyboard Cat''s Greatest Hits'
____________________
品名:Keyboard Cat's Greatest Hits
演唱:Keyboard Cat
年份:
发行:Sony Music Inc
*** (s.jdbc.JdbcBackend.statement) Preparing statement: update "ALBUMS" set "YEAR" = ? where "ALBUMS"."TITLE" = 'Keyboard Cat''s Greatest Hits'
____________________
品名:Keyboard Cat's Greatest Hits
演唱:Keyboard Cat
年份:
发行:Sony Music Inc
*** (s.jdbc.JdbcBackend.statement) Preparing statement: update "ALBUMS" set "YEAR" = ? where "ALBUMS"."TITLE" = 'Keyboard Cat''s Greatest Hits'
____________________
品名:Keyboard Cat's Greatest Hits
演唱:Keyboard Cat
年份:
发行:Sony Music Inc
*** (s.jdbc.JdbcBackend.statement) Preparing statement: update "ALBUMS" set "YEAR" = ? where "ALBUMS"."TITLE" = 'Spice'
____________________
品名:Spice
演唱:Spice Girls
年份:
发行:Columbia Records
*** (s.jdbc.JdbcBackend.statement) Preparing statement: update "ALBUMS" set "YEAR" = ? where "ALBUMS"."TITLE" = 'Spice'
____________________
品名:Spice
演唱:Spice Girls
年份:
发行:Columbia Records
*** (s.jdbc.JdbcBackend.statement) Preparing statement: update "ALBUMS" set "YEAR" = ? where "ALBUMS"."TITLE" = 'Spice'
____________________
品名:Spice
演唱:Spice Girls
年份:
发行:Columbia Records
*** (s.jdbc.JdbcBackend.statement) Preparing statement: update "ALBUMS" set "YEAR" = ? where "ALBUMS"."TITLE" = 'Whenever You Need Somebody'
____________________
品名:Whenever You Need Somebody
演唱:Rick Astley
年份:
发行:Sony Music Inc
*** (s.jdbc.JdbcBackend.statement) Preparing statement: update "ALBUMS" set "YEAR" = ? where "ALBUMS"."TITLE" = 'Whenever You Need Somebody'
____________________
品名:Whenever You Need Somebody
演唱:Rick Astley
年份:
发行:Sony Music Inc
*** (s.jdbc.JdbcBackend.statement) Preparing statement: update "ALBUMS" set "YEAR" = ? where "ALBUMS"."TITLE" = 'Whenever You Need Somebody'
____________________
品名:Whenever You Need Somebody
演唱:Rick Astley
年份:
发行:Sony Music Inc
*** (s.jdbc.JdbcBackend.statement) Preparing statement: update "ALBUMS" set "YEAR" = ? where "ALBUMS"."TITLE" = 'The Triumph of Steel'
____________________
品名:The Triumph of Steel
演唱:Manowar
年份:
发行:The K-Pops Singers
*** (s.jdbc.JdbcBackend.statement) Preparing statement: update "ALBUMS" set "YEAR" = ? where "ALBUMS"."TITLE" = 'The Triumph of Steel'
____________________
品名:The Triumph of Steel
演唱:Manowar
年份:
发行:The K-Pops Singers
*** (s.jdbc.JdbcBackend.statement) Preparing statement: update "ALBUMS" set "YEAR" = ? where "ALBUMS"."TITLE" = 'The Triumph of Steel'
____________________
品名:The Triumph of Steel
演唱:Manowar
年份:
发行:The K-Pops Singers
*** (s.jdbc.JdbcBackend.statement) Preparing statement: update "ALBUMS" set "YEAR" = ? where "ALBUMS"."TITLE" = 'Believe'
____________________
品名:Believe
演唱:Justin Bieber
年份:
发行:Columbia Records
*** (s.jdbc.JdbcBackend.statement) Preparing statement: update "ALBUMS" set "YEAR" = ? where "ALBUMS"."TITLE" = 'Believe'
____________________
品名:Believe
演唱:Justin Bieber
年份:
发行:Columbia Records
*** (s.jdbc.JdbcBackend.statement) Preparing statement: update "ALBUMS" set "YEAR" = ? where "ALBUMS"."TITLE" = 'Believe'
____________________
品名:Believe
演唱:Justin Bieber
年份:
发行:Columbia Records Process finished with exit code
注意:上面这个例子是存粹做出来作为函数调用示范的,不做任何逻辑和应用上的考虑。下面是本篇讨论的示范源代码:
package com.bayakala.funda.fdapars.examples
import slick.driver.H2Driver.api._
import com.bayakala.funda.samples._
import com.bayakala.funda.fdarows.FDARowTypes._
import com.bayakala.funda.fdarows.FDAROW
import com.bayakala.funda.fdasources.FDADataStream._ import scala.concurrent.duration._
import com.bayakala.funda.fdapipes._
import FDAValves._
import com.bayakala.funda.fdapars.FDAPars._
import com.bayakala.funda.fdarows.FDARowTypes.FDAActionRow
object Example1 extends App {
val albums = SlickModels.albums
val companies = SlickModels.companies //数据源query
val albumsInfo = for {
(a,c) <- albums join companies on (_.company === _.id)
} yield (a.title,a.artist,a.year,c.name) //query结果强类型(用户提供)
case class Album(title: String, artist: String, year: Int, publisher: String) extends FDAROW
//转换函数(用户提供)
def toTypedRow(row: (String, String, Option[Int], String)): Album =
Album(row._1, row._2, row._3.getOrElse(), row._4) val db = Database.forConfig("h2db") val streamLoader = FDAStreamLoader(slick.driver.H2Driver, toTypedRow _)
val albumStream1 = streamLoader.fda_typedStream(albumsInfo.result)(db)(.minutes, , )()()
val albumStream2 = streamLoader.fda_typedStream(albumsInfo.result)(db)(.minutes, , )()()
val albumStream3 = streamLoader.fda_typedStream(albumsInfo.result)(db)(.minutes, , )()() def printAlbums: FDATask[FDAROW] = row => {
row match {
case album: Album =>
println("____________________")
println(s"品名:${album.title}")
println(s"演唱:${album.artist}")
println(s"年份:${album.year}")
println(s"发行:${album.publisher}") fda_skip
// fda_next(album)
case r@_ => fda_next(r)
}
} // fda_par_load(albumStream1,albumStream1,albumStream1)(3).appendTask(printAlbums).startRun //并行作业函数
def updateYear: FDATask[FDAROW] = row => {
row match {
case album: Album =>
val action = albums.filter{r => r.title === album.title}.map(_.year).update(Some())
//把原数据和新构建的Action一起传下去
fda_next(List(album,FDAActionRow(action)))
case others@ _ => fda_next(others)
}
} val runner = FDAActionRunner(slick.driver.H2Driver)
//并行运算函数
def runActions: FDATask[FDAROW] = row => {
row match {
case FDAActionRow(action) =>
runner.fda_execAction(action)(db)
fda_skip
case others@ _ => fda_next(others)
}
}
//并行读取
val s1 = fda_par_load(albumStream1,albumStream1,albumStream1)()
//并行构建Action
val s2 = fda_runPar(s1.toPar(updateYear))() //并行运算Action
val s3 = fda_runPar(s2.toPar(runActions))()
//开始运算
s3.appendTask(printAlbums).startRun }
FunDA(11)- 数据库操作的并行运算:Parallel data processing的更多相关文章
- Spring Boot快速入门(四):使用jpa进行数据库操作
原文地址:https://lierabbit.cn/articles/5 添加依赖 新建项目选择web,JPA,MySQL三个依赖 对于已存在的项目可以在bulid.gradle加入,spring b ...
- Java 8 实战 P2 Functional-style data processing
目录 Chapter 4. Introducing streams Chapter 5. Working with streams Chapter 6. Collecting data with st ...
- Java Spring Boot VS .NetCore (四)数据库操作 Spring Data JPA vs EFCore
Java Spring Boot VS .NetCore (一)来一个简单的 Hello World Java Spring Boot VS .NetCore (二)实现一个过滤器Filter Jav ...
- Django1.11模型类数据库操作
django模型类数据库操作 数据库操作 添加数据 1,创建类对象,属性赋值添加 book= BookInfo(name='jack',pub_date='2010-1-1') book.save() ...
- C# 4.0 新特性之并行运算(Parallel)
介绍C# 4.0 的新特性之并行运算 Parallel.For - for 循环的并行运算 Parallel.ForEach - foreach 循环的并行运算 Parallel.Invoke - 并 ...
- 转载 精进不休 .NET 4.0 (5) - C# 4.0 新特性之并行运算(Parallel) https://www.cnblogs.com/webabcd/archive/2010/06/03/1750449.html
精进不休 .NET 4.0 (5) - C# 4.0 新特性之并行运算(Parallel) 介绍C# 4.0 的新特性之并行运算 Parallel.For - for 循环的并行运算 Parall ...
- django数据库操作和中间件
数据库配置 django的数据库相关表配置在models.py文件中,数据库的连接相关信息配置在settings.py中 models.py相关相关参数配置 from django.db import ...
- phpcms v9 中的数据库操作函数
1.查询 $this->select($where = '', $data = '*', $limit = '', $order = '', $group = '', $key='') 返回 ...
- PHP数据库操作:使用ORM
之前我发了一篇博文PHP数据库操作:从MySQL原生API到PDO,向大家展示PHP是如何使用MySQL原生API.MySQLi面向过程.MySQLi面向对象.PDO操作MySQL数据库的.本文介绍如 ...
随机推荐
- 设计模式之flyweight享元模式
运用共享技术支持大量细粒度对象的使用 Flyweight模式(享元) Java深入到一定程度,就不可避免的碰到设计模式这一概念,了解设计模式,将使自己对java中的接口或抽象类应用有更深的理解.设计模 ...
- MYSQL 问题小总结
mysql 问题小总结 1.MySQL远程连接ERROR 2003(HY000):Can't connect to MySQL server on ‘ip’(111)的问题 通常是mysql配置文件中 ...
- pthread_once 和 pthread_key
http://blog.csdn.net/rickyguo/article/details/6259410 一次性初始化 有时候我们需要对一些posix变量只进行一次初始化,如线程键(我下面会讲到). ...
- JavaScript中的 prototype 和 constructor
prototype属性 任何js函数都可以用作构造函数, 而构造函数需要用到prototype属性, 因此, 每个js函数F(除了ES5的Function.bind()方法返回的函数外) 都自动拥有 ...
- 2018.07.12 atcoder Go Home(贪心)
传送门 题意简述:大家在数轴上生活,公司在 s. 班车送所有人回家,有 n 个住处,第 i 个位置在 xi,居住了 pi 的人. 保证 xi 互不相同. 大家⼀起投票向前还是向后,如果票数相同就固定向 ...
- a标签点击后,保证后来的样式
在个人中心中,左侧的菜单(a标签),点击之后,不能够应用新的样式 而在静态界面html 中表现正常,在修改成动态的就不行了 可能是a标签链接经过了后台,当前页面的this对象发生了变化,所以就不能够像 ...
- HDU 1197 Specialized Four-Digit Numbers (枚举+进制转化,简单)
题意:让求从2992-9999中所有数字,满足10进制各位之和和12进制和16进制各位数字之和相等. 析:没啥可说的,只能枚举从2992-9999,每个进制都算一下. 代码如下: #include & ...
- 三)mybatis 二级缓存,整合ehcache
mybatis-config.xml <setting name="cacheEnabled" value="true" /> PersonMapp ...
- 都有哪些 cache ?
1. spring http://www.springframework.org/schema/cache 2. ehcache LOGO关键词:palindrome [ˈpælɪndrəʊm] 正读 ...
- (最小生成树)QS Network -- ZOJ --1586
链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1586 http://acm.hust.edu.cn/vjudge/ ...