洛谷题目链接:[HAOI2018]染色

题目背景

HAOI2018 Round2 第二题

题目描述

为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种.

然而小 C 只关心序列的 \(N\) 个位置中出现次数恰好为 \(S\) 的颜色种数, 如果恰 好出现了 \(S\) 次的颜色有 \(K\) 种, 则小 C 会产生 \(W_k\) 的愉悦度.

小 C 希望知道对于所有可能的染色方案, 他能获得的愉悦度的和对 \(1004535809\) 取模的结果是多少.

输入输出格式

输入格式:

从标准输入读入数据. 第一行三个整数 \(N, M, S\).

接下来一行 \(M + 1\) 个整数, 第 \(i\) 个数表示 \(W_{i-1}\)​ .

输出格式:

输出到标准输出中. 输出一个整数表示答案.

输入输出样例

输入样例#1:

8 8 3

3999 8477 9694 8454 3308 8961 3018 2255 4910

输出样例#1:

524070430

输入样例#2:

https://www.luogu.org/paste/rxrv9utg

输出样例#2:

231524284

说明

特殊性质: \(\forall 1 \le i \le m, W_i = 0\)

对于 \(100\%\) 的数据, 满足 \(0 \le W_i < 1004535809\)

题解: 设\(f[i]\)表示出现次数恰好等于\(S\)的颜色个数大于等于\(i\)的方案数,从\(m\)种颜色中选出\(i\)种颜色的方案是\(C_m^i\),将染色的序列看做一个有可重元素的排列,那么方案数就是$$f[i]=C_mi*\frac{n!}{(n-S*i)!(S!)i}(n-Si)^{m-i}$$

之所以是大于等于,是因为式子的最后面那部分还可能有出现次数恰好等于\(S\)的颜色.

设\(lim=min(\lfloor\frac{n}{s} \rfloor,m)\).

设\(ans[i]\)表示出现次数恰好等于\(S\)的颜色个数恰好等于\(i\)的方案数,根据容斥,有:$$ans[i]=\sum_{j=i}{lim}(-1){j-i}C_j^if[j]$$

将式子中的组合数拆开$$ans[i]i!=\sum_{j=i}{lim}*\frac{(-1){j-i}}{(j-i)!}\frac{f[j]}{j!}$$

可以发现这是一个卷积的形式,设\(A[i]=\frac{(-1)^{i}}{i!},B[i]=\frac{f[i]}{i}\),那么将\(A\)的系数翻转,再与\(B\)做多项式乘法就可以了.

最后在统计答案的时候要注意,因为将\(A\)的系数翻转了,所以求出来的结果相当于是\(C_{i+lim}=A^{'}_{lim+i-j}*B_j\),所以在统计出现\(i\)次的方案数时要将数组的下标加\(lim\).

#include<bits/stdc++.h>
using namespace std;
const int N = 1e7+5;
const int M = 3e5+5;
const int mod = 1004535809; int n, m, s, lim, r[M], len = 0, f[M], ans = 0, w[N], a[N], cnt[N];
int pinv[N], inv[N], fac[N]; void init(int n){
pinv[0] = inv[0] = fac[0] = pinv[1] = inv[1] = fac[1] = 1;
for(int i = 2; i <= n; i++){
fac[i] = 1ll*fac[i-1]*i%mod;
inv[i] = 1ll*(mod-mod/i)*inv[mod%i]%mod;
pinv[i] = 1ll*pinv[i-1]*inv[i]%mod;
}
} int C(int n, int m){ return 1ll*fac[n]*pinv[m]%mod*pinv[n-m]%mod; } int qpow(int x, int n){
int res = 1;
for(; n; x = 1ll*x*x%mod, n >>= 1)
if(n & 1) res = 1ll*res*x%mod;
return res;
} void NTT(int *A, int f){
for(int i = 0; i < n; i++) if(i < r[i]) swap(A[i], A[r[i]]);
for(int i = 1; i < n; i <<= 1){
int wi = qpow(3, (mod-1)/(i << 1)), x, y;
if(f == -1) wi = qpow(wi, mod-2);
for(int j = 0; j < n; j += (i << 1)){
for(int k = 0, w = 1; k < i; k++, w = 1ll*w*wi%mod){
x = A[j+k], y = 1ll*A[i+j+k]*w%mod;
A[j+k] = (x+y)%mod, A[i+j+k] = (x-y+mod)%mod;
}
}
}
if(f == -1){
int invn = qpow(n, mod-2);
for(int i = 0; i < n; i++) A[i] = 1ll*A[i]*invn%mod;
}
} int main(){
ios::sync_with_stdio(false);
cin >> n >> m >> s, lim = min(m, n/s), init(max(n, m));
for(int i = 0; i <= m; i++) cin >> w[i];
for(int i = 0; i <= lim; i++)
cnt[i] = 1ll*fac[n]*qpow(pinv[s], i)%mod*pinv[n-s*i]%mod*C(m, i)%mod*qpow(m-i, n-s*i)%mod*fac[i]%mod;
for(int i = 0; i <= lim; i++) a[i] = (((lim-i)&1) ? (mod-pinv[lim-i]) : pinv[lim-i]);
for(n = 1; n < (lim+1 << 1); n <<= 1) len++;
for(int i = 0; i < n; i++) r[i] = (r[i>>1]>>1)|((i&1)<<len-1);
NTT(cnt, 1), NTT(a, 1);
for(int i = 0; i < n; i++) cnt[i] = 1ll*cnt[i]*a[i]%mod;
NTT(cnt, -1);
for(int i = 0; i <= lim; i++) (ans += 1ll*cnt[lim+i]*pinv[i]%mod*w[i]%mod) %= mod;
cout << ans << endl;
return 0;
}

[洛谷P4491] [HAOI2018]染色的更多相关文章

  1. Solution -「HAOI 2018」「洛谷 P4491」染色

    \(\mathcal{Description}\)   Link.   用 \(m\) 种颜色为长为 \(n\) 的序列染色,每个位置一种颜色.对于一种染色方案,其价值为 \(w(\text{出现恰 ...

  2. 洛咕 P4491 [HAOI2018]染色

    显然颜色数量不会超过\(lim=\min(m,n/S)\) 考虑容斥,计算恰好出现了\(S\)次的颜色有至少\(i\)种的方案数\(f[i]\),钦定\(i\)种颜色正好放\(S\)种 有\(m\)种 ...

  3. BZOJ2243 洛谷2486 [SDOI2011]染色 树链剖分

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2243 题目传送门 - 洛谷2486 题意概括 一棵树,共n个节点. 让你支持以下两种操作,共m次操 ...

  4. P4491 [HAOI2018]染色

    题目链接:洛谷 题目大意:$n$个位置染$m$种颜色,如果出现次数恰为$S$次的颜色有$k$种,则对答案有$W_k$的贡献,求所有染色方案的答案之和$\bmod 1004535809$. 数据范围:$ ...

  5. [洛谷P4492] [HAOI2018]苹果树

    洛谷题目链接:[HAOI2018]苹果树 题目背景 HAOI2018 Round2 第一题 题目描述 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C ...

  6. 洛谷 P3177 树上染色 解题报告

    P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...

  7. P4491 [HAOI2018]染色 容斥+NTT

    $ \color{#0066ff}{ 题目描述 }$ 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 ...

  8. 洛谷 P4495 [HAOI2018]奇怪的背包 解题报告

    P4495 [HAOI2018]奇怪的背包 题目描述 小\(C\)非常擅长背包问题,他有一个奇怪的背包,这个背包有一个参数\(P\),当他 向这个背包内放入若干个物品后,背包的重量是物品总体积对\(P ...

  9. 洛谷 P2486 [SDOI2011]染色/bzoj 2243: [SDOI2011]染色 解题报告

    [SDOI2011]染色 题目描述 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同 ...

随机推荐

  1. Internet 校验和的数学性质

    Internet 校验和(Checksum)仅计算头部的正确性,这一点很重要,这意味着 IP 协议不检查 IPv4 packet 有效载荷部分的数据正确性.为了保证有效载荷部分的正常传输,其他协议必须 ...

  2. 单调队列(数列中长度不超过k的子序列和的最值)

    ★实验任务 小 F 很爱打怪,今天因为系统 bug,他提前得知了 n 只怪的出现顺序以及击 倒每只怪得到的成就值 ai.设第一只怪出现的时间为第 1 秒,这个游戏每过 1 秒 钟出现一只新怪且没被击倒 ...

  3. 微信小程序Mustache语法

    小程序开发的wxml里,用到了Mustache语法.所以,非常有必要把Mustache研究下. 什么是Mustache?Mustache是一个logic-less(轻逻辑)模板解析引擎,它是为了使用户 ...

  4. Swift-懒加载使用

    //    懒加载 lazy var tableView : UITableView = {         let tempTableView = UITableView()         ret ...

  5. 由RS-232串口到PROFIBUS-DP总线的转换接口设计

    转自:http://gongkong.ofweek.com/2013-08/ART-310007-11001-28716256_2.html 1.PROFIBUS-DP网络协议 PROFIBUS的网络 ...

  6. OSG学习:裁剪变换(1)

    在OSG中,默认了6个裁剪平面以去除没有必要显示的物体.也可以自己定义其他的裁剪平面来确定裁剪. osg::ClipPlane类继承自osg::StateAttribute类,封装了OpenGL中的g ...

  7. python基础(六)python操作excel

    一.python操作excel,python操作excel使用xlrd.xlwt和xlutils模块,xlrd模块是读取excel的,xlwt模块是写excel的,xlutils是用来修改excel的 ...

  8. PHP中的PEAR是什么?

    PEAR也就是为PHP扩展与应用库(PHP Extension and Application Repository),它是一个PHP扩展及应用的一个代码仓库. 补充:php中扩展pecl与pear ...

  9. centos 升级内核(编译安装)

    yum install -y wget gcc gc bc gd make perl ncurses-devel xz下载地址:https://www.kernel.org#tar -Jxvf lin ...

  10. 虚拟机centos 安装 redis 环境 linux 使用 java 远程连接 redis

    redis官网地址:http://www.redis.io/ 最新版本:2.8.3 在Linux下安装Redis非常简单,具体步骤如下(官网有说明): 1.下载源码,解压缩后编译源码. $ wget ...