题目

其实这道题不是很难,但是我刚开始拿到这道题的时候不知道怎么做,

因为这个式子我就不知道是干什么的:

65|f(x)

百度解释(若a/b=x...0  称a能被b整除,b能整除a,即b|a,读作“b整除a”或“a能被b整除”。a叫做b的倍数,b叫做a的约数(或因数)。)

即:f(x)能够被65整除。

即题目大意是:

方程f(x)=5*x^13+13*x^5+k*a*x;输入任意一个数k,是否存在一个数a,对任意x都能使得f(x)能被65整除
解题思路:
当x=1时f(x)=18+ka,又因为f(x)能被65整出,故设n为整数,可得,f(x)=n*65;
即:18+ka=n*65; n为整数
则问题转化为,对于给定范围的a只需要验证,是否存在一个a使得(18+k*a)%65==0能被b整除”。


#include<stdio.h>
int main()
{
int k,i;
while(~scanf("%d",&k))
{
for(i=0;i<66;i++)
{
if((18+k*i)%65==0)
{
printf("%d\n",i);
break;
}
}
if(i==66) printf("no\n");
}
return 0;
}

hdu1089 Ignatius's puzzle的更多相关文章

  1. Ignatius's puzzle

    Ignatius's puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  2. HDUOJ-----1098 Ignatius's puzzle

    Ignatius's puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. 数学: HDU1098 Ignatius's puzzle

    Ignatius's puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  4. 数学--数论--HDU 1098 Ignatius's puzzle (费马小定理+打表)

    Ignatius's puzzle Problem Description Ignatius is poor at math,he falls across a puzzle problem,so h ...

  5. HDOJ 1098 Ignatius's puzzle

    Problem Description Ignatius is poor at math,he falls across a puzzle problem,so he has no choice bu ...

  6. HDU 1098 Ignatius's puzzle 费马小定理+扩展欧几里德算法

    题目大意: 给定k,找到一个满足的a使任意的x都满足 f(x)=5*x^13+13*x^5+k*a*x 被65整除 推证: f(x) = (5*x^12 + 13 * x^4 + ak) * x 因为 ...

  7. HDU 1098 Ignatius's puzzle(数学归纳)

    以下引用自http://acm.hdu.edu.cn/discuss/problem/post/reply.php?postid=8466&messageid=2&deep=1 题意以 ...

  8. HDU 1098 Ignatius's puzzle

    http://acm.hdu.edu.cn/showproblem.php?pid=1098 题意 :输入一个K,让你找一个a,使得f(x)=5*x^13+13*x^5+k*a*x这个f(x)%65等 ...

  9. 【HDOJ】1098 Ignatius's puzzle

    数学归纳法,得证只需求得使18+ka被64整除的a.且a不超过65. #include <stdio.h> int main() { int i, j, k; while (scanf(& ...

随机推荐

  1. bat 批量更改文件名的批处理文件

    bat 批量更改文件名的批处理文件 最近下了不少动画,不过文件名都太长,一般都是 [字幕组][名称][集数][语言][分辨率][编码].后缀 这样的格式 我喜欢简单的名字,比如 01.rmvb 之类, ...

  2. How a non-windowed component can receive messages from Windows

    Why do it? Sometimes we need a non-windowed component (i.e. one that isn't derived fromTWinControl) ...

  3. JPA子查询

    Subquery<A> subquery = criteriaQuery.subquery(A.class); Root<A> root1 = subquery.from(A. ...

  4. JPA报错, java.lang.NullPointerException

    java.lang.NullPointerException 我觉得这应该是一个很常见的错误, 数据库没取到数据嘛, 很正常, JPA没取到数据就是会抛出空指针异常, 但是就是这么简单的一个错误也让我 ...

  5. avg(xxxxxx)什么时候能独自出现?

    avg(xxxxxx)是作为求一组数据的平均数,需要有这组数据的总数和个数,所以通常配合着group by来使用, 比如: SELECT ID, AVG(GRADE) AS 平均数 FROM TEST ...

  6. 清明梦超能力者黄YY(idx数组)

    清明梦超能力者黄YY https://www.nowcoder.com/acm/contest/206/I 题目描述 黄YY是一个清明梦超能力者,同时也是一个记忆大师.他能够轻松控制自己在梦中的一切, ...

  7. 127单词接龙 1· Word Ladder1

    找出最短路径 [抄题]: Given two words (beginWord and endWord), and a dictionary's word list, find the length ...

  8. [leetcode]277. Find the Celebrity 找名人

    Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there may exist o ...

  9. Python 安装路径, dist-packages 和 site-packages 区别

    Stack Overflow's answer 译: dist-packages is a Debian-specific convention that is also present in its ...

  10. linux下xampp(apache)中配置域名访问,以及遇到的问题

    xampp中apache使用域名访问 一.首先找到/opt/lampp/etc/httpd.conf: # Virtual hosts Include etc/extra/httpd-vhosts.c ...