\subsection{Even and Odd Functions}

For a function $f$ in the form $y=f(x)$, we describe its type of symmetry by
calling the function \textbf{even}\index{even functions} or
\textbf{odd}\index{odd functions}. An \textbf{even function} means $f(-x)=f(x)$.
An example of an even function is the function $f(x)=x^2$.
\begin{figure}[H]
\begin{center}
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^2$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,red]{x^2};
\end{axis}
\end{tikzpicture}
\end{center}
\caption{$f(x)=x^2$ is an \emph{even function}.}
\end{figure}
An \textbf{odd function} means $f(-x)=-f(x)$. An example of this is the
function $f(x)=x^3$.
\begin{figure}[H]
\begin{center}
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^3$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,red]{x^3};
\end{axis}
\end{tikzpicture}
\end{center}
\caption{$f(x)=x^3$ is an \emph{odd function}.}
\end{figure}
\subsection{Surjective, Injective, and Bijective Functions} \index{one-to-one}
\index{injective}
If each $f(x)$ value produced by a function $f$ can only be obtained by one
unique $x$ value, then we say $f$ is \textbf{injective}, or
\textbf{one-to-one}. $ f: D \to R $ is injective or one-to-one iff
\[
\forall{(x_1 \wedge x_2 \in D)}
\big[f(x_1)=f(x_2)
\to x_1=x_2\big].
\]
\begin{remark}
This also means that for injective functions,
$ x_1 \neq x_2 \to f(x_1) \neq f(x_2)$.
\end{remark} \begin{figure}[H]
\begin{center}
\subfigure[The function $f(x)=x^2$ is not \emph{one-to-one} because
there are two possible $x$-values that can produce each given
$y$-value.]
{\
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^2$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,red]{x^2};
\end{axis}
\end{tikzpicture}
}
\hspace{0.2in}%
\subfigure[The function $f(x)=x^3$ is \emph{one-to-one} because every
given $y$-value is mapped from a unique $x$-value.]
{\
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^3$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,blue]{x^3};
\end{axis}
\end{tikzpicture}
}
\end{center}
\end{figure}
A function $y=f(x)$ is one-to-one iff its graph intersects each horizontal
line at most once.\index{horizontal line test} \index{onto}
\index{surjective}
$f: D \to R $ is \textbf{surjective} or \textbf{onto} iff
\[\forall (y \in R) \exists (x \in D) \big[f(x)=y\big]. \] \begin{figure}[H]
\begin{center}
\subfigure[The function $f(x)=x^2$ is not \emph{surjective} because
the values $(-\infty, 0)$ are never reached in its range.]
{\
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^2$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,red]{x^2};
\end{axis}
\end{tikzpicture}
}
\hspace{0.2in}%
\subfigure[The function $f(x)=x^3$ is \emph{one-to-one} because all $y$ values from $-\infty, \infty)$ have corresponding $x$-values.]
{\
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^3$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,blue]{x^3};
\end{axis}
\end{tikzpicture}
}
\end{center}
\end{figure} \index{bijective}
A function $f:A \to B$ is \textbf{bijective} iff it is \emph{both injective and surjective}. \begin{figure}[H]
\begin{center}
\subfigure[The function $f(x)=x^2$ is not bijective.]
{\
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^2$},
xlabel={$x$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,red]{x^2};
\end{axis}
\end{tikzpicture}
}
\hspace{0.2in}%
\subfigure[The function $f(x)=x^3$ is bijective.]
{\
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)=x^3$},
xlabel={$x$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,blue]{x^3};
\end{axis}
\end{tikzpicture}
}
\end{center}
\end{figure} \subsection{Graphs} \index{graphs} \index{graph}
If $f$ is a function with a domain $D$, then its \textbf{graph} is the set
\[ \Big\{ \big( x,f(x) \big) \Big | x \in D \Big\},\]
that is, it is the set of all points $(x, f(x))$ where $x$ is in the domain of the function.%
\footnote{Here, the difference between the words \emph{graph} and \emph{plot} is sometimes confusing. Technically speaking, a \emph{graph} is the set defined explicitly here, while a function's \emph{plot} refers to any pictorial representation of a data set. However, since the usage is inconsistent in this text, these formal definitions will usually not apply. It can be safely assumed that as long as we are within the realm of real numbers, all uses of either \emph{graph} or \emph{plot} hereafter simply refer to the pictorial representation of a function's graph in the form of a curve on the cartesian plane.} If $ (x,y) $ is a point on $f$, then $y=f(x)$ is the height of the graph above point $x$.
This height might be positive or negative, depending on the sign of $f(x)$.
We use this height relationship to plot functions.
\begin{figure}[H]
\begin{center}
\begin{tikzpicture}
\begin{axis}[
ylabel={$f(x)$},
xlabel={$x$},
axis x line=bottom,
axis y line=center,
tick align=outside,
yticklabels={,,}
xticklabels={,,}
xtickmax=10,
]
\addplot[smooth,red]{x+2};
\end{axis}
\end{tikzpicture}
\caption{A plot of the function $f(x)=x+2$}
\end{center}
\end{figure}

Even and Odd Functions的更多相关文章

  1. 【JavaScript】Understanding callback functions in Javascript

    Callback functions are extremely important in Javascript. They’re pretty much everywhere. Originally ...

  2. UNDERSTANDING CALLBACK FUNCTIONS IN JAVASCRIPT

    转自: http://recurial.com/programming/understanding-callback-functions-in-javascript/ Callback functio ...

  3. 理解callback function in javascript

    以下内容主要摘自[1,2] (1)In javascript, functions are first-class objects, which means functions can be used ...

  4. Legendre polynomials

    In mathematics, Legendre functions are solutions to Legendre's differential equation: In particular, ...

  5. (转) Functions

    Functions Functions allow to structure programs in segments of code to perform individual tasks. In ...

  6. ES6 In Depth: Arrow functions

    Arrows <script language="javascript"> <!-- document.bgColor = "brown"; ...

  7. SQL Fundamentals || Single-Row Functions || 数字函数number functions

    SQL Fundamentals || Oracle SQL语言 SQL Fundamentals: Using Single-Row Functions to Customize Output使用单 ...

  8. How to create functions that can accept variable number of parameters such as Format

    http://www.chami.com/tips/delphi/112696D.html Sometimes it's necessary to pass undefined number of [ ...

  9. Clausen Functions (and related series, functions, integrals)

    Since the Clausen functions are intimately related to a number of other important special functions, ...

随机推荐

  1. MongoDB 数据查询

    数据查询 基本查询 方法find():查询 db.集合名称.find({条件文档}) 方法findOne():查询,只返回第一个 db.集合名称.findOne({条件文档}) 方法pretty(): ...

  2. Linux初学时的一些常用命令(2)

    文件的操作   创建一个文件    touch 文件名  创建一个空白的文件 复制文件    cp 文件 目录/文件名     例如:      cp 1.txt 2.txt      cp 1.tx ...

  3. Codeforces Round #533 (Div. 2)

    C: 题意: 有n个整数ai,数列a有两个神奇的性质.1.所有的整数都在[l,r]范围内.2.这n个数的和能被3整除.现在给出l和r,和个数n,问你有多少种方法构造出数列a,方案数mod1e9+7. ...

  4. joinablequeue模块 生产者消费者模型 Manager模块 进程池 管道

    一.生产者消费者 主要是为解耦(借助队列来实现生产者消费者模型) import queue  # 不能进行多进程之间的数据传输 (1)from multiprocessing import Queue ...

  5. 判断Javascript对象是否为空

    判断普通javascript对象是否为空(含有可枚举的属性,自有的.继承的都可以),可使用jQuery 3.2.1版的isEmptyObject()方法: isEmptyObject: functio ...

  6. .NET4.0的listview与DataPager的结合使用时的模板编辑

    1.设置listview模板样式: <asp:ListView ID="ListView1" runat="server" DataSourceID=&q ...

  7. 不同的路径12障碍物 · Unique Paths12

    [抄题]: 有一个机器人的位于一个 m × n 个网格左上角. 机器人每一时刻只能向下或者向右移动一步.机器人试图达到网格的右下角. 问有多少条不同的路径? [思维问题]: 以为要用count来计数: ...

  8. Web Components 规范学习

    最新的规范在这里:http://w3c.github.io/webcomponents/explainer/ 依据规范,有以下四个组成部分: Templates Custom Elements Sha ...

  9. SpringMVC工作原理2(代码详解)

    图1.流程图 1.当一个请求(request)过来,进入DispatcherServlet中,里面有个方法叫 doDispatch()方法 里面包含了核心流程 源码如下: 4.然后往下看getHand ...

  10. ajax原理以及优缺点(转)

    1.ajax技术的背景不可否认,ajax技术的流行得益于google的大力推广,正是由于google earth.google suggest以及gmail等对ajax技术的广泛应用,催生了ajax的 ...