http://poj.org/problem?id=2411 (题目链接)

题意

  一个$n*m$的网格,用$1*2$的方块填满有多少种方案。

Solution

  轮廓线dp板子。按格dp,对上方和左方的格子的占用情况进行讨论转移。0表示已放置,1表示未放置。

细节

  LL,滚动清空数组。

代码

  1. // poj2411
  2. #include<algorithm>
  3. #include<iostream>
  4. #include<cstdlib>
  5. #include<cstring>
  6. #include<cstdio>
  7. #include<cmath>
  8. #define LL long long
  9. #define HAS 4001
  10. #define inf 2147483640
  11. #define Pi acos(-1.0)
  12. #define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
  13. using namespace std;
  14.  
  15. const int maxs=100010;
  16. LL f[2][maxs];
  17. int n,m,bin[30];
  18.  
  19. int main() {
  20. bin[0]=1;for (int i=1;i<=20;i++) bin[i]=bin[i-1]<<1;
  21. while (scanf("%d%d",&n,&m)!=EOF && n && m) {
  22. memset(f,0,sizeof(f));
  23. int p=0;f[0][0]=1;
  24. for (int i=0;i<n;i++)
  25. for (int j=0;j<m;j++) {
  26. p^=1;memset(f[p],0,sizeof(f[p]));
  27. for (int st=0;st<bin[m];st++) if (f[p^1][st]) {
  28. int left=j ? st>>(j-1)&1 : 0,up=st>>j&1;
  29. if (up) f[p][st^bin[j]]+=f[p^1][st];
  30. else {
  31. if (left) f[p][st^bin[j-1]]+=f[p^1][st];
  32. f[p][st^bin[j]]+=f[p^1][st];
  33. }
  34. }
  35. }
  36. printf("%lld\n",f[p][0]);
  37. }
  38. return 0;
  39. }

【poj2411】 Mondriaan's Dream的更多相关文章

  1. 【POJ2411】Mondriaan's Dream(轮廓线DP)

    [POJ2411]Mondriaan's Dream(轮廓线DP) 题面 Vjudge 题解 这题我会大力状压!!! 时间复杂度大概是\(O(2^{2n}n^2)\),设\(f[i][S]\)表示当前 ...

  2. 【poj2411】Mondriaan's Dream 状态压缩dp

    AC传送门:http://vjudge.net/problem/POJ-2411 [题目大意] 有一个W行H列的广场,需要用1*2小砖铺盖,小砖之间互相不能重叠,问有多少种不同的铺法? [题解] 对于 ...

  3. 【POJ2411】Mondriaan's Dream

    题目大意:给定一个 N*M 的棋盘,用 1*2 的木条填满有多少种不同的方式. 题解:在这里采用以行为阶段进行状压 dp.到第 i 行时,1*1 的木块分成两类,第一类是这个木块是竖着放置木条的上半部 ...

  4. 【POJ 2411】 Mondriaan's Dream

    [题目链接] 点击打开链接 [算法] 很明显,我们可以用状态压缩动态规划解决此题 f[n][m]表示n-1行已经放满,第n行状态为m的合法的方案数 状态转移方程很好推 注意这题时限较紧,注意加一些小优 ...

  5. POJ2411 铺地砖 Mondriaan's Dream

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 15962   Accepted: 923 ...

  6. poj2411 Mondriaan's Dream【状压DP】

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20822   Accepted: 117 ...

  7. poj 2411 Mondriaan&#39;s Dream 【dp】

    题目:id=2411" target="_blank">poj 2411 Mondriaan's Dream 题意:给出一个n*m的矩阵,让你用1*2的矩阵铺满,然 ...

  8. POJ2411 Mondriaan's Dream(状态压缩)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 15295   Accepted: 882 ...

  9. 【轮廓线DP】POJ2411-Mondriaan's Dream

    今天美国的院士过来讲课XD以为会很无聊但是谜之好听,而且英语基本上都听懂了的样子♪(´▽`) 逃到图书馆来写解题报告 [题目大意] 给出一个m*n的方格,用2*1的骨牌覆盖有几种情况. [思路] 最基 ...

随机推荐

  1. Linux常规命令总结

    Linux常规命令总结,仅供参考: 系统信息 arch 显示机器的处理器架构(1) uname -m 显示机器的处理器架构(2) uname -r 显示正在使用的内核版本 dmidecode -q 显 ...

  2. 学习python,第二篇

    注释 #  单行注释 '''   多行注释 '''      或者    """ 多行注释 """ # Author: Itxpl mag ...

  3. Netty源码分析第1章(Netty启动流程)---->第4节: 注册多路复用

    Netty源码分析第一章:Netty启动流程   第四节:注册多路复用 回顾下以上的小节, 我们知道了channel的的创建和初始化过程, 那么channel是如何注册到selector中的呢?我们继 ...

  4. Bitcoin Core P2P网络层

    目录 数据结构 节点发现和节点连接 地址管理 节点发现 节点连接 插口(Sockets)和消息 Socket线程 (net.cpp) 消息线程 ProcessMessages (net_process ...

  5. Mysql数据库的四大特性

    Mysql数据库事务的四大特性(ACID) 事务:把一组密不可分的操作系列集合在一起,这些操作要么全部执行,要么全部不执行. 1.原子性:事务是内定义的操作是一个整体,是不可分割的. 2.一致性:事务 ...

  6. crosstool-ng搭建交叉编译环境注意事项

    一,crosstool-ng的下载及编译方法 可以参考如下网站: http://www.crosstool-ng.org/ 二,编译过程注意事项 1)如果遇到有些代码包不能下载,请依据指定版本,在这里 ...

  7. Scrum立会报告+燃尽图(Final阶段第五次)

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2484 项目地址:https://coding.net/u/wuyy694 ...

  8. 什么是REST编程

    参考:什么是REST编程:http://www.ruanyifeng.com/blog/2011/09/restful.html 一.REST是Representational State Trans ...

  9. Sprint会议2

    昨天:准备查找安卓APP开发的有关资料,安装有关软件 今天:自己制作一个安卓小程序,熟悉一下操作 遇到问题:安装遇到问题,环境配置出现问题

  10. 使用exe4j将jar包导出为exe

    Exe4J使用方法 此工具是将Java程序包装成exe格式文件工具.(点击exe4j\bin\exe4j.exe文件)启动后如下图所示 如果未注册,则可使用这个注册码:A-XVK209982F-1y0 ...