【刷题】BZOJ 3732 Network
Description
给你N个点的无向图 (1 <= N <= 15,000),记为:1…N。
图中有M条边 (1 <= M <= 30,000) ,第j条边的长度为: d_j ( 1 < = d_j < = 1,000,000,000).
现在有 K个询问 (1 < = K < = 20,000)。
每个询问的格式是:A B,表示询问从A点走到B点的所有路径中,最长的边最小值是多少?
Input
第一行: N, M, K。
第2..M+1行: 三个正整数:X, Y, and D (1 <= X <=N; 1 <= Y <= N). 表示X与Y之间有一条长度为D的边。
第M+2..M+K+1行: 每行两个整数A B,表示询问从A点走到B点的所有路径中,最长的边最小值是多少?
Output
对每个询问,输出最长的边最小值是多少。
Sample Input
6 6 8
1 2 5
2 3 4
3 4 3
1 4 8
2 5 7
4 6 2
1 2
1 3
1 4
2 3
2 4
5 1
6 2
6 1
Sample Output
5
5
5
4
4
7
4
5
HINT
1 <= N <= 15,000
1 <= M <= 30,000
1 <= d_j <= 1,000,000,000
1 <= K <= 15,000
Solution
kruskal重构树裸题
建出重构树之后找到两个点的 \(LCA\) ,其权值就是答案
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=15000+10,MAXM=30000+10;
int n,m,k,e,beg[MAXN<<1],to[MAXN<<2],nex[MAXN<<2],val[MAXN<<1],Jie[20][MAXN<<1],fa[MAXN<<1],cnt,dep[MAXN<<1];
struct node{
int u,v,w;
inline bool operator < (const node &A) const {
return w<A.w;
};
};
node side[MAXM];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline int found(int x)
{
if(x!=fa[x])fa[x]=found(fa[x]);
return fa[x];
}
inline void insert(int x,int y)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
}
inline void dfs(int x,int f)
{
dep[x]=dep[f]+1;
for(register int i=beg[x];i;i=nex[i])
if(to[i]!=f)dfs(to[i],x);
}
inline int LCA(int u,int v)
{
if(dep[u]<dep[v])std::swap(u,v);
if(dep[u]>dep[v])
for(register int i=19;i>=0;--i)
if(dep[Jie[i][u]]>=dep[v])u=Jie[i][u];
if(u==v)return u;
for(register int i=19;i>=0;--i)
if(Jie[i][u]!=Jie[i][v])u=Jie[i][u],v=Jie[i][v];
return Jie[0][u];
}
int main()
{
read(n);read(m);read(k);
for(register int i=1;i<=m;++i)
{
int u,v,w;read(u);read(v);read(w);
side[i]=(node){u,v,w};
}
std::sort(side+1,side+m+1);
cnt=n;
for(register int i=1;i<=n+n-1;++i)fa[i]=i;
for(register int i=1,u,v;i<=m;++i)
{
u=found(side[i].u),v=found(side[i].v);
if(u==v)continue;
else
{
++cnt;val[cnt]=side[i].w;
insert(u,cnt);insert(cnt,u);
insert(v,cnt);insert(cnt,v);
fa[u]=fa[v]=Jie[0][u]=Jie[0][v]=cnt;
}
}
dfs(cnt,0);
for(register int j=1;j<=19;++j)
for(register int i=1;i<=cnt;++i)Jie[j][i]=Jie[j-1][Jie[j-1][i]];
while(k--)
{
int u,v;read(u);read(v);
write(val[LCA(u,v)],'\n');
}
return 0;
}
【刷题】BZOJ 3732 Network的更多相关文章
- BZOJ 3732: Network 最小生成树 倍增
3732: Network 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3732 Description 给你N个点的无向图 (1 &l ...
- BZOJ 3732 Network
2016.1.28 纪念我BZOJ第一题 Description 给你N个点的无向图 (1 <= N <= 15,000),记为:1…N. 图中有M条边 (1 <= M <= ...
- BZOJ 3732 Network Kruskal+倍增LCA
题目大意:给定一个n个点m条边的无向连通图.k次询问两点之间全部路径中最长边的最小值 NOIP2013 货车运输.差点儿就是原题...仅仅只是最小边最大改成了最大边最小.. . 首先看到最大值最小第一 ...
- Kruskal重构树+LCA || BZOJ 3732: Network
题面:https://www.lydsy.com/JudgeOnline/problem.php?id=3732 题解:Kruskal重构树板子 代码: #include<cstdio> ...
- bzoj 3732 Network(最短路+倍增 | LCT)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3732 [题意] 给定一个无向图,处理若干询问:uv路径上最长的边最小是多少? [思路一 ...
- BZOJ 3732 Network Link-Cut-Tree (我是认真的!!
题目大意:给定一个n个点m条边的无向连通图.k次询问两点之间全部路径中最长边的最小值 LCT的裸题! 首先维护一个动态的最小生成树,然后每次增加边时删除两点间路径上权值最大的边.最后询问时直接求x到y ...
- bzoj 3732: Network 树上两点边权最值
http://www.lydsy.com/JudgeOnline/problem.php?id=3732 首先想到,要使得最长边最短,应该尽量走最短的边,在MST上. 然后像LCA那样倍增娶个最大值 ...
- BZOJ 3732 Network —— 最小生成树 + 倍增LCA
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3732 Description 给你N个点的无向图 (1 <= N <= 15, ...
- BZOJ 3732 Network 最小瓶颈路
题目大意:给出一个无向边,非常多询问,问x,y两地之间的最长路最短是多少. 思路:乍一看好像是二分啊. 的确这个题二分能够做.可是时间会慢非常多,有的题直接就T掉(NOIP2013货车运输). 事实上 ...
随机推荐
- Markdown 版本演进
本文作为 Markdown 系列的第二篇,对上一篇使用 Markdown 写技术博客,我踩过的 6个坑博客提到的版本变迁进行简要的提纲说明. 如果不想读文章,请直接看思维导图,使用 Atom + ma ...
- sqli-labs学习笔记 DAY5
DAY 5 sqli-labs lesson 26a 闭合符号为单引号和括号,并且不回显错误,如果服务器是Linux,尝试%a0代替空格,这里尝试使用布尔型 数据库名长度:?id=1')&&a ...
- Nginx笔记(一):安装
Nginx在安装前需要先安装其所依赖的类库,所以需先行安装好之后再进行Nginx安装. Nginx依赖以下模块: l gzip模块需要 zlib 库 l rewrite模块需要 pcre 库 l ...
- Yii2 创建新项目目录
默认的高级应用模板包括三个应用 backend – 应用的后台 frontend – 应用的前台 console – 应用的控制台应用 那么如果我们要在增加应用呢?比如在加一个手机端的应用,或者后台和 ...
- hadoop在章鱼大数据平台下的安装与配置
本次所用的软件版本: ubuntu :14.04 Hadoop:hadoop-2.6.0-cdh5.4.5 jdk:jdk-7u75-linux-x64 Hive: Hbase: 一.配置基本环境 1 ...
- Scrum Meeting 12 -2014.11.18
今天的任务都比较顺利,测试暂时还没发现特别的问题. Member Today’s task Next task 林豪森 与其他小组商讨整合问题 与其他小组商讨整合问题 宋天舒 测试项目功能实现 测试项 ...
- 奔跑吧DKY——团队Scrum冲刺阶段-Day 7
今日完成任务 谭鑫:将人物图添加到游戏以及商店界面中,实现商店的选择换装功能 黄宇塘:制作人物图.背景图 赵晓海:阅读所有代码测试所有功能,美化部分界面 方艺雯:为商店界面及关于界面添加必要文字说明 ...
- 2017-2018-2 1723 『Java程序设计』课程 结对编程练习-四则运算-准备阶段
2017-2018-2 1723 『Java程序设计』课程 结对编程练习-四则运算-准备阶段 在一个人孤身奋斗了将近半个学期以后,终于迎来的我们的第一次团队协作共同编码,也就是,我们的第一个结对编程练 ...
- 20145214 《网络对抗技术》 Web基础
20145214 <网络对抗技术> Web基础 1.实验后回答问题 (1)什么是表单 表单在网页中主要负责数据采集,提供了填写数据.选择数据,收集数据并提交给后台的功能 一个表单有三个基本 ...
- Sprint7
进展:根据昨天查到的资料,今天开始编写闹钟部分的代码,主要实现了闹钟添加事件显示时间主界面.