洛谷P5283 & LOJ3048:[十二省联考2019]异或粽子——题解
https://www.luogu.org/problemnew/show/P5283
小粽是一个喜欢吃粽子的好孩子。今天她在家里自己做起了粽子。
小粽面前有 n 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 1 到 n。第 ii 种馅儿具有一个非负整数的属性值 a_i。每种馅儿的数量都足够多,即小粽不会因为缺少原料而做不出想要的粽子。小粽准备用这些馅儿来做出 k 个粽子。
小粽的做法是:选两个整数数 l, r,满足 1⩽l⩽r⩽n,将编号在 [l,r] 范围内的所有馅儿混合做成一个粽子,所得的粽子的美味度为这些粽子的属性值的异或和。(异或就是我们常说的 xor 运算,即 C/C++ 中的
ˆ
运算符或 Pascal 中的xor
运算符)小粽想品尝不同口味的粽子,因此它不希望用同样的馅儿的集合做出一个以上的 粽子。
小粽希望她做出的所有粽子的美味度之和最大。请你帮她求出这个值吧!
UPD:手痒了于是还是把代码写了……
不要在意我只是突然诈了一个尸。
以及场外选手题解口胡之后看了一下正解发现差不多?
正好一直想要诈一个尸,就用这个诈一个尸吧。
顺(主)便(要)聊聊心路历程。
——————
看到异或取最大第一眼想到线性基,然后看到连续的数就想到了BZOJ3261:最大异或和 。(天哪我记性真好一年前的东西我还记得)
然而此时并看不出二者的关系。
然后想暴力,枚举$O(n^2)$,但$k$与$n$并非一个数量级的。
于是想到了BZOJ2006:[NOI2010]超级钢琴 对前$k$大值的处理方法。(天哪我记性真好一年前的东西我还记得*2)
而超级钢琴那道题我们是用了st表维护的,但是异或显然不能用st表维护。
那就可持久化trie呗!顺理成章的联系到了一起。
于是题解如下:首先预处理前缀异或和$s$,建立可持久化trie,则原$[l,r]$的异或和即为$s[r] \; xor \; s[l-1]$。
于是固定$l$求$r$使得$s[r] \; xor \; s[l-1]$尽可能的最大(设为$w$吧),然后将这些信息一起扔到堆里面(同时我们把$r$所在的范围$L,R$一起扔里面)。
每次弹出一个$(l,r,w,L,R)$的时候,我们就要找第二大的$[l,r]$扔进去,超级钢琴告诉我们,第二大的$r$一定在$[L,r-1]$和$[r+1,R]$当中,我们干脆把区间分成两份各求一遍直接都扔进去就好了。
复杂度一个建trie$O(nloga_i)$一个预处理$O(nloga_i)$一个弹$O(kloga_i)$。
(老年选手不会算复杂度了不知道对不对orz)
另外洛谷需要开O2
#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#include<algorithm>
#include<cctype>
using namespace std;
typedef long long ll;
const int N=5e5+;
const int B=;
inline ll read(){
ll X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
int son[],sum,num;
}tr[*N];
int tot,rt[N],pool;
ll s[N];
void insert(int y,int &x,ll k,int pos,int now){
tr[x=++pool]=tr[y];tr[x].sum++;
if(now<){tr[x].num=pos;return;}
bool p=k&(1LL<<now);
insert(tr[y].son[p],tr[x].son[p],k,pos,now-);
return;
}
int query(int nl,int nr,ll k,int now){
if(now<)return tr[nr].num;
bool p=k&(1LL<<now);
int delta=tr[tr[nr].son[p^]].sum-tr[tr[nl].son[p^]].sum;
if(delta>)return query(tr[nl].son[p^],tr[nr].son[p^],k,now-);
else return query(tr[nl].son[p],tr[nr].son[p],k,now-);
}
struct data{
int l,r;
ll w;
int L,R;
bool operator <(data b)const{
return w<b.w;
}
};
priority_queue<data>q;
int main(){
int n=read(),k=read();
for(int i=;i<=n;i++)s[i]=s[i-]^read();
for(int i=;i<=n;i++)insert(rt[i-],rt[i],s[i],i,B);
for(int i=;i<=n;i++){
int l=i;int r=query(rt[l-],rt[n],s[l-],B);
q.push((data){l,r,s[r]^s[l-],l,n});
}
ll ans=;
while(k--){
data tmp=q.top();q.pop();
ans+=tmp.w;
int i=tmp.l,j=tmp.r;
if(tmp.L<=j-){
int t=query(rt[tmp.L-],rt[j-],s[i-],B);
q.push((data){i,t,s[t]^s[i-],tmp.L,j-});
}
if(j+<=tmp.R){
int t=query(rt[j],rt[tmp.R],s[i-],B);
q.push((data){i,t,s[t]^s[i-],j+,tmp.R});
}
}
printf("%lld\n",ans);
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
洛谷P5283 & LOJ3048:[十二省联考2019]异或粽子——题解的更多相关文章
- 【洛谷5283】[十二省联考2019] 异或粽子(可持久化Trie树+堆)
点此看题面 大致题意: 求前\(k\)大的区间异或和之和. 可持久化\(Trie\)树 之前做过一些可持久化\(Trie\)树题,结果说到底还是主席树. 终于,碰到一道真·可持久化\(Trie\)树的 ...
- [LOJ3048] [十二省联考2019] 异或粽子
题目链接 LOJ:https://loj.ac/problem/3048 洛谷:https://www.luogu.org/problemnew/show/P5283 Solution 考虑每个子串都 ...
- 【简】题解 P5283 [十二省联考2019]异或粽子
传送门:P5283 [十二省联考2019]异或粽子 题目大意: 给一个长度为n的数列,找到异或和为前k大的区间,并求出这些区间的异或和的代数和. QWQ: 考试时想到了前缀异或 想到了对每个数按二进制 ...
- 【BZOJ5495】[十二省联考2019]异或粽子(主席树,贪心)
[BZOJ5495][十二省联考2019]异或粽子(主席树,贪心) 题面 BZOJ 洛谷 题解 这不是送分题吗... 转异或前缀和,构建可持久化\(Trie\). 然后拿一个堆维护每次的最大值,每次如 ...
- [十二省联考2019]异或粽子——可持久化trie树+堆
题目链接: [十二省联考2019]异或粽子 求前$k$大异或区间,可以发现$k$比较小,我们考虑找出每个区间. 为了快速得到一个区间的异或和,将原序列做前缀异或和. 对于每个点作为右端点时,我们维护出 ...
- [十二省联考2019]异或粽子 01trie
[十二省联考2019]异或粽子 01trie 链接 luogu 思路 首先求前k大的(xo[i]^xo[j])(i<j). 考场上只想到01trie,不怎么会写可持久,就写了n个01trie,和 ...
- 洛谷.5283.[十二省联考2019]异或粽子(可持久化Trie 堆)
LOJ 洛谷 考场上都拍上了,8:50才发现我读错了题=-= 两天都读错题...醉惹... \(Solution1\) 先求一遍前缀异或和. 假设左端点是\(i\),那么我们要在\([i,n]\)中找 ...
- Luogu P5283 / LOJ3048 【[十二省联考2019]异或粽子】
联考Day1T1...一个考场上蠢了只想到\(O(n^2)\)复杂度的数据结构题 题目大意: 求前\(k\)大区间异或和的和 题目思路: 真的就是个sb数据结构题,可持久化01Trie能过(开O2). ...
- LOJ 3049: 洛谷 P5284: 「十二省联考 2019」字符串问题
题目传送门:LOJ #3049. 题意简述: 给定一个长度为 \(n\) 的母串 \(S\). 有 \(n_a\) 个 A 类串,都是 \(S\) 的子串,以区间的形式给出. 有 \(n_b\) 个 ...
随机推荐
- SQL注入原理&分类&危害&防御
SQL是什么? 结构化查询语句 SQL注入是什么? 是一种将SQL 语句插入或添加到用户输入的参数中,这些参数传递到后台服务器,加以解析并执行 造成注入的原因/原理? 1.对用户输入的参数没有进行严格 ...
- Spring中的数据库事物管理
Spring中的数据库事物管理 只要给方法加一个@Transactional注解就可以了 例如:
- 【Docker】第五篇 Docker 数据管理
一.基本介绍 数据管理的原因:Docker中的容器一旦删除,容器本身的rootfs文件系统就会被删除,容器中的所有数据就会被删除.为了对一些需要持久化的数据,不随容器删除而删除,所以我们可以通过多个容 ...
- Openstack逻辑架构
一. Keystone -身份认证管理 提供了认证和授权的服务,openstack不同的组件通信都要经过授权,确保正确的用户和服务是经过认证的.并且它集成了大量的认证机制,比如用户名/密码和令牌/基 ...
- C++判断回文
判断一个字符串是否为回文,如“goddog”. 代码: #include <iostream> #include <string> #include <stdio.h&g ...
- Sqlmap常用命令大全
1 Options(选项) -h,--help 显示帮助消息-hh 显示详细帮助-version -v VERBOSE 详细级别 0-6 默认12 Target 目标-u URL--url=URL-g ...
- 备份win10的驱动程序
目录 折腾历程 怎么备份驱动 备份的驱动如何使用 关于驱动程序的OS兼容性 驱动程序的其他安装方式 1.折腾历程 从闲鱼上收了一个INSIGNIA的二合一笔记本,w7100,因原装win10性能不行自 ...
- [salt] jinja模板中变量使用pillar的几种方法
先转载下jinja模板中使用变量的方法,后文主要讲解pillar的变量使用方法 一.jinja模版的使用方法: 1.file状态使用template参数 - template:jinja 2.模版文件 ...
- python清空列表的方法
1.大数据量的list,要进行局部元素删除,尽量避免用del随机删除,非常影响性能,如果删除量很大,不如直接新建list,然后用下面的方法释放清空旧list. 2.对于一般性数据量超大的list,快速 ...
- unload没有用
今天下午测试了unload这个事件包括beforeunload <script type="text/javascript"> window.addEventListe ...