BZOJ2673 [Wf2011]Chips Challenge 费用流 zkw费用流 网络流
https://darkbzoj.cf/problem/2673
有一个芯片,芯片上有N*N(1≤N≤40)个插槽,可以在里面装零件。
有些插槽不能装零件,有些插槽必须装零件,剩下的插槽随意。
要求装好之后满足如下两条要求:
1、第 i 行和第 i 列的零件数目必须一样多(1≤i≤N)。
2、第 i 行的零件数目不能超过总的零件数目的 A/B(1≤i≤N,0≤A≤B≤1000,B≠0)。
求最多可以另外放多少个零件(就是除掉必须放的)。如果无解输出impossible。
zkw费用流就是像跑最大流一样跑费用流,可以并行处理使得稠密图和二分图速度变快(据说)。
棋盘图依然是把横纵坐标拆成2n个点,每一个棋子可以用其横坐标到纵坐标的一条路表示。
棋盘上放最多的棋子相当于所有位置放上棋子后去掉最少的棋子,最小费用流处理就是给每一个可以去掉的棋子一个固定费用(1)。
i行和i列保留零件数目一样多就是从横坐标的i点到纵坐标的i点连一条费用为0流量固定为w的路。 w一定时,每一行每一列保留棋子的数量一定<=w。w上限是n所以我们可以枚举w建n次图跑网络流。
此时的最大流最小费用就是条件w下可以去掉的棋子数量的最小值(不仅要验证满足题目中的要求2,还要验证最大流=所有可以放棋子的位置的数量,因为保留棋子数量有时候可能小于某行列C的数量)(如果这个w跑最大流最小费用的方案不合法,那么就不存在w的合法条件)。
这个建n次图的方法有点像noip2017的那道搜索题目 NOIP2017 D2T2宝藏 都是按层次找的想法。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
#define LL long long
const int maxn=;
int n,A,B;
char ch[][];
int han[]={},shu[]={},sum,num,S,T,mx,cnt;
struct nod{
int x,y,next,v,co,rev;
}e[maxn];
int head[]={},tot=;
void init(int x,int y,int v,int co){
e[++tot].y=y;e[tot].x=x;e[tot].v=v;e[tot].co=co;e[tot].next=head[x];e[tot].rev=tot+;head[x]=tot;
e[++tot].y=x;e[tot].x=y;e[tot].v=;e[tot].co=-co;e[tot].next=head[y];e[tot].rev=tot-;head[y]=tot;
}
queue<int>q;
int dis[]={};bool vis[]={};
bool SPFA(){
memset(dis,,sizeof(dis));
memset(vis,,sizeof(vis));
mx=dis[];
q.push(S);vis[S]=;dis[S]=;
while(!q.empty()){
int x=q.front(),y;q.pop();vis[x]=;
for(int i=head[x];i;i=e[i].next){
y=e[i].y;
if(e[i].v>&&dis[y]>dis[x]+e[i].co){
dis[y]=dis[x]+e[i].co;
if(!vis[y]){
q.push(y);vis[y]=;
}
}
}
}
return dis[T]!=mx;
}
int dfs(int x,int val){
if(x==T){
cnt+=dis[T]*val;
return val;
}
int liu=,tv,y;vis[x]=;
for(int i=head[x];i;i=e[i].next){
y=e[i].y;
if(vis[y])continue;
if(e[i].v>&&dis[y]==dis[x]+e[i].co){
vis[y]=;
tv=dfs(y,min(val-liu,e[i].v));
liu+=tv;e[i].v-=tv;e[e[i].rev].v+=tv;
if(liu==val)break;
}
}
return liu;
}
int main(){
int C=;
while(~scanf("%d%d%d",&n,&A,&B)){
if(n==&&A==&&B==)break;
++C;
memset(han,,sizeof(han));memset(shu,,sizeof(shu));
sum=;cnt=;S=n*+;T=S+;
int zz=,ans=-;
for(int i=;i<n;i++){
scanf("%s",ch[i]);
for(int j=;j<n;j++){
if(ch[i][j]!='/'){
++han[i+];++shu[j+];++sum;
if(ch[i][j]=='C')++zz;
}
}
}
for(int w=;w<=n;w++){
tot=;memset(head,,sizeof(head));
for(int i=;i<=n;i++){
init(S,i,han[i],);
init(i+n,T,shu[i],);
init(i,i+n,w,);
for(int j=;j<=n;j++){
if(ch[i-][j-]=='.')init(i,j+n,,);
}
}int num=;cnt=;
while(SPFA()){memset(vis,,sizeof(vis));num+=dfs(S,sum);}
if(num==sum&&w*B<=(sum-cnt)*A)ans=max(ans,sum-cnt);
}cout<<endl;
if(ans==-)printf("Case %d: impossible\n",C);
else printf("Case %d: %d\n",C,ans-zz);
}
return ;
}
BZOJ2673 [Wf2011]Chips Challenge 费用流 zkw费用流 网络流的更多相关文章
- CSU 1948: 超级管理员(普通费用流&&zkw费用流)
Description 长者对小明施加了膜法,使得小明每天起床就像马丁的早晨一样. 今天小明早上醒来发现自己成了一位仓管员.仓库可以被描述为一个n × m的网格,在每个网格上有几个箱子(可能没有).为 ...
- Bzoj2673 3961: [WF2011]Chips Challenge 费用流
国际惯例题面:如果我们枚举放几个零件的话,第二个限制很容易解决,但是第一个怎么办?(好的,这么建图不可做)考虑我们枚举每行每列最多放几个零件t,然后计算零件总数sum.这样如果可行的话,则有t*B&l ...
- bzoj 3961: [WF2011]Chips Challenge【最小费用最大流】
参考:https://blog.csdn.net/Quack_quack/article/details/50554032 神建图系列 首先把问题转为全填上,最少扣下来几个能符合条件 先考虑第2个条件 ...
- 【BZOJ 2673】[Wf2011]Chips Challenge
题目大意: 传送门 $n*n$的棋盘,有一些位置可以放棋子,有一些已经放了棋子,有一些什么都没有,也不能放,要求放置以后满足:第i行和第i列的棋子数相同,同时每行的棋子数占总数比例小于$\frac{A ...
- bzoj3961[WF2011]Chips Challenge
题意 给出一个n*n的网格,有些格子必须染成黑色,有些格子必须染成白色,其他格子可以染成黑色或者白色.要求最后第i行的黑格子数目等于第i列的黑格子数目,且某一行/列的格子数目不能超过格子总数的A/B. ...
- [Wf2011]Chips Challenge
两个条件都不太好处理 每行放置的个数实际很小,枚举最多放x 但还是不好放 考虑所有位置先都放上,然后删除最少使得合法 为了凑所有的位置都考虑到,把它当最大流 但是删除最少,所以最小费用 行列相关,左行 ...
- zkw费用流+当前弧优化
zkw费用流+当前弧优化 var o,v:..] of boolean; f,s,d,dis:..] of longint; next,p,c,w:..] of longint; i,j,k,l,y, ...
- 学习了ZKW费用流
所谓ZKW费用流,其实就是Dinic. 若干年前有一个人发明了最小增广路算法,每次用BFS找一条增广路,时间O(nm^2) 然后被DinicD飞了:我们为什么不可以在长度不变时多路增广呢?时间O(n^ ...
- zkw费用流
期末结束,竞赛生活继续开始,先怒刷完寒假作业再说 至于期末考试,数学跪惨,各种哦智障错,还有我初中常用的建系大法居然被自己抛至脑后,看来学的还是不扎实,以后数学要老老实实学.物理被永哥黑了两分,然后很 ...
随机推荐
- python——脚本和print
脚本和print 1.脚本文件 <Python 基础教程>(第二版)中 P118页,原操作为下: 1 _metaclass_ = type 2 3 class Person: 4 def ...
- Framebuffer 驱动学习总结(二)---- Framebuffer模块初始化
---恢复内容开始--- Framebuffer模块初始化过程:--driver\video\fbmem.c 1. 初始化Framebuffer: FrameBuffer驱动是以模块的形式注册到系统 ...
- 二十、springboot之jpa开发@MappedSuperclass 注解说明
@MappedSuperclass使用条件: 当我们进行开发项目时,我们经常会用到实体映射到数据库表的操作,此时我们经常会发现在我们需要映射的几个实体类中,有几个共同的属性,例如编号ID,创建者,创建 ...
- Gradle设置代理
在本地仓库路径下(如果没有修改的话默认C:\Users\用户名\.gradle),或者项目下,新建一个文件gradle.properties systemProp.http.proxyHost=网址 ...
- Ubuntu 18.04安装MongoDB 4.0(社区版)
Ubuntu 18.04(虚拟机VirtualBox上),MongoDB 4.0, 听室友说,23点有世界杯决赛呢!可是,孤要写博文的啊!以记录这忙乱的下午和晚间成功安装了一个软件到Linux上.—— ...
- python网络编程-进程锁
一:进程锁的作用 进程锁是防止多进程并发执行在屏幕打印的时候,其他进程也输出数据到屏幕,而出现混乱现象. 比如:进程池中很多进程会向同一个日志文件中打印日志 二:代码 # -*- coding:utf ...
- ASP .NET Core 2.0 MVC 发布到 IIS 上以后 无法下载apk等格式的文件
ASP .NET Core MVC 发布到 IIS 上以后 无法下载apk等格式的文件 使用.NET Core MVC创建了一个站点,其他文件可以下载,但是后来又需求,就把手机端的apk合适的文件上 ...
- 如何查看页面是否开启了gzip压缩
1.谷歌浏览器 F12 2.在表头单击鼠标右键 3.如果开启了gzip则显示gzip,没有则是空
- SNMP相关命令
SNMP的相关命令使用方法: snmpdelta 一直监视SNMP变量中的变化 linux:~ # snmpdelta -c public -v 1 -Cs -CT localhost IF-MIB: ...
- 洛谷P2458 保安站岗
传送门啦 分析: 树形dp刚刚入门,这是我做的第一个一个点同时受父亲节点和儿子节点控制的题目. 由于这个题中某一个点放不放保安与父亲和儿子都有关系(因为线段的两个端点嘛),所以我们做题时就要考虑全面. ...