logistic回归又称logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率。

相关DEMO参见:混沌数学之离散点集图形DEMO

logistic的用途:
  一、寻找危险因素,正如上面所说的寻找某一疾病的危险因素等。   

二、预测,如果已经建立了logistic回归模型,则可以根据模型,预测在不同的自变量情况下,发生某病或某种情况的概率有多大。   

三、判别,实际上跟预测有些类似,也是根据logistic模型,判断某人属于某病或属于某种情况的概率有多大,也就是看一下这个人有多大的可能性是属于某病。   

生态学中的虫口模型(亦即Logistic映射)可用来描述:
  x(n+1)=a*x(n)*(1-x(n)),a属于[0,4],x属于(0,1)这是1976年数学生态学家R. May在英国的《自然》杂志上发表的一篇后来影响甚广的综述中所提出的,最早的一个由倍周期分岔通向混沌的一个例子。后来经过Feigenbaum研究得出:一个系统一旦发生倍周期分岔,必然导致混沌。他还发现并确定了该系统由倍周期分岔,必然导致混沌。他还发现并确定了该系统由信周期分岔通向混沌的两个普适常数(也称为Feigenbaum常数)。

相关代码:

//http://wenku.baidu.com/view/d51372a60029bd64783e2cc0.html?re=view
class LogisticEquation : public DiscreteEquation
{
public:
LogisticEquation()
{
m_StartX = 0.0f;
m_StartY = 0.25f; m_ParamA = 3.672f;
} void IterateValue(float x, float y, float& outX, float& outY) const
{
outX = x+0.00025f;
outY = m_ParamA*y*(-y);
} bool IsValidParamA() const {return true;}
};

混沌点集图形:

混沌数学之logistic模型的更多相关文章

  1. 混沌数学之ASin模型

    相关软件:混沌数学之离散点集图形DEMO 相关代码: class ASinEquation : public DiscreteEquation { public: ASinEquation() { m ...

  2. 混沌数学之Kent模型

    相关软件:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/view/7c6f4a000740be1e650e9a75.html // 肯特映射 clas ...

  3. 混沌数学之Feigenbaum模型

          1975年,物理学家米切尔·费根鲍姆(Mitchell Feigenbaum)发现,一个可用实验加以测 量的特殊数与每个周期倍化级联相联系.这个数大约是4.669,它与π并列成为似乎在数学 ...

  4. 混沌数学之Standard模型

    相关软件混沌数学之离散点集图形DEMO 相关代码: class StandardEquation : public DiscreteEquation { public: StandardEquatio ...

  5. 混沌数学之Arnold模型

    相关软件混沌数学之离散点集图形DEMO 相关代码: class ArnoldEquation : public DiscreteEquation { public: ArnoldEquation() ...

  6. 混沌数学之Baker模型

    相关DEMO参见:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/view/ac9b57ea172ded630b1cb65b.html class Ba ...

  7. 混沌数学之Henon模型

    相关DEMO参见:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/view/d51372a60029bd64783e2cc0.html?re=view ...

  8. 混沌数学之离散点集图形DEMO

    最近看了很多与混沌相关的知识,并写了若干小软件.混沌现象是个有意思的东西,同时混沌也能够生成许多有意思的图形.混沌学的现代研究使人们渐渐明白,十分简单的数学方程完全可以模拟系统如瀑布一样剧烈的行为.输 ...

  9. 混沌数学之二维logistic模型

    上一节讲了logistic混沌模型,这一节对其扩充一下讲二维 Logistic映射.它起着从一维到高维的衔接作用,对二维映射中混沌现象的研究有助于认识和预测更复杂的高维动力系统的性态.通过构造一次藕合 ...

随机推荐

  1. HTTP.Socket.TCP详解

    这会没事,整理了一下HTTP,socket,TCP之间的关系与区别,我们在面试的时候应该会经常问到这方面的东西,那么什么是HTTP呢? HTTP属于老话题了,在项目中我们经常需要往服务端发POST或者 ...

  2. thinkphp3.2中开启静态缓存后对404页面的处理方法

    静态缓存很实用但是有时有些不需要静态缓存,如404页面,第一次访问返回404页面并缓存,第二次换回的状态就是200,属于正常访问,虽然人眼可以看出是404页面,但是搜索引擎不会的,而是把这个页面当成正 ...

  3. Collabtive 系统 SQL 注入实验(补充)

    SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令. 具体来说,它是利用现有应用程序,将(恶意)的SQL命令注 ...

  4. Android手机系统设置页面跳转

    android.provider.Settings. 1.   ACTION_ACCESSIBILITY_SETTINGS :    // 跳转系统的辅助功能界面 Intent intent = ne ...

  5. Java 内存模型基础

    一.并发编程模型的两个关键问题 1. 线程之间如何通信 通信是指线程之间以何种机制来交换信息. 在命令式编程中,线程之间的通信机制有两种:共享内存和消息传递. 在共享内存的并发模型里,线程之间共享程序 ...

  6. Java反射机制demo(四)—获取一个类的父类和实现的接口

    Java反射机制demo(四)—获取一个类的父类和实现的接口 1,Java反射机制得到一个类的父类 使用Class类中的getSuperClass()方法能够得到一个类的父类 如果此 Class 表示 ...

  7. HDU 4641 K-string 后缀自动机 并查集

    http://acm.hdu.edu.cn/showproblem.php?pid=4641 https://blog.csdn.net/asdfgh0308/article/details/4096 ...

  8. 洛谷.4252.[NOI2006]聪明的导游(提答 直径 随机化)

    题目链接 随机化 暴力: 随便从一个点开始DFS,每次从之前得到的f[i]最大的子节点开始DFS.f[i]为从i开始(之前)能得到的最大答案. 要注意的是f[i]应当有机会从更小的答案更新, 9.10 ...

  9. 【差分约束系统/SPFA】POJ3169-Layout

    [题目大意] n头牛从小到大排,它们之间某些距离不能大于一个值,某些距离不能小于一个值,求第一头牛和第N头牛之间距离的最大值. [思路] 由题意可以得到以下不等式d[AL]+DL≥d[BL]:d[BD ...

  10. 新的起点 Entry KINGSOFT

    夜里,陪宝宝睡了会,呃岁月转变,变化里,不经意间加入了kingsoft. 呃,第一天所以算是一个起点或是一个开始.遇到些琐事,Slow network,oa Account login O(∩_∩)O ...