DP/GCD


  然而蒟蒻并不会做……

  Orz @lct1999神犇

  首先我们肯定是要枚举下端点的……嗯就枚举右端点吧……

  那么对于不同的GCD,对应的左端点最多有log(a[i])个:因为每次gcd缩小,至少变成gcd/2(2是最小的质因数),所以是log个左端点……

  所以我们就有了log段!每段的gcd是相同的。当我们加入一个新的右端点时,除了该节点本身外,不会出现新的左端点,原有的左端点可能会不变,或是两(多)段合并成一段,用滚动数组记一下,暴力搞就可以了……$O(n*log^2n)$

Orz lct1999,我WA了的原因:

  1.每组数据还是需要清一下tot数组的,不能光靠加新点的时候清tot[i&1],第一个点应该把tot[0]也清掉。

  2.每次是更新这一段的gcd,所以是要记录gcd的,不能光记个端点,每次求两个端点的gcd……这明显不对啊好吗= =

蒟蒻果然好弱啊……退OI保平安吧QAQ

 /**************************************************************
Problem: 4052
User: Tunix
Language: C++
Result: Accepted
Time:820 ms
Memory:5180 kb
****************************************************************/ //BZOJ 4052
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
using namespace std;
typedef long long LL;
LL getLL(){
LL v=,sign=; char ch=getchar();
while(ch<''||ch>'') {if (ch=='-') sign=-; ch=getchar();}
while(ch>=''&&ch<='') {v=v*+ch-''; ch=getchar();}
return v*sign;
}
const int N=,INF=~0u>>;
/*******************template********************/
LL a[N],f[][N],b[][N],n;
int tot[];
inline LL gcd(LL a,LL b){return b?gcd(b,a%b):a;} int main(){
#ifndef ONLINE_JUDGE
freopen("input.txt","r",stdin);
// freopen("output.txt","w",stdout);
#endif
int T=getLL(),now;
while(T--){
n=getLL();
tot[]=tot[]=;
LL ans=;
F(i,,n){
now=i&;
tot[now]=;
a[i]=getLL();
F(j,,tot[now^]){
int k=b[now^][j];
if ( j> && gcd(a[i],f[now^][j])==gcd(a[i],f[now^][j-]) ) continue;
b[now][++tot[now]]=b[now^][j];
f[now][tot[now]]=gcd(a[i],f[now^][j]);
ans=max(ans,f[now][tot[now]]*(i-k+));
}
if (f[now][tot[now]]!=a[i]){
b[now][++tot[now]]=i;
f[now][tot[now]]=a[i];
}
// F(j,1,tot[now]) printf("%lld ",b[now][j]); puts("");
// F(j,1,tot[now]) printf("%lld ",f[now][j]); puts("");
ans=max(ans,a[i]);
}
printf("%lld\n",ans);
}
return ;
}

4052: [Cerc2013]Magical GCD

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 146  Solved: 68
[Submit][Status][Discuss]

Description

给出一个长度在 100 000 以内的正整数序列,大小不超过 10^12。 
求一个连续子序列,使得在所有的连续子序列中,它们的GCD值乘以它们的长度最大。

Input

Output

Sample Input

1
5
30 60 20 20 20

Sample Output

80

HINT

Source

[Submit][Status][Discuss]

【BZOJ】【4052】【CERC2013】Magical GCD的更多相关文章

  1. 【BZOJ 2754 喵星球上的点名】

    Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 2512  Solved: 1092[Submit][Status][Discuss] Descript ...

  2. 【BZOJ】3052: [wc2013]糖果公园

    http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...

  3. 【BZOJ】3319: 黑白树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...

  4. 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...

  5. 【BZOJ】【1025】【SCOI2009】游戏

    DP/整数拆分 整个映射关系可以分解成几个循环(置换群的预备知识?),那么总行数就等于各个循环长度的最小公倍数+1(因为有个第一行的1~N).那么有多少种可能的排数就等于问有多少种可能的最小公倍数. ...

  6. 【BZOJ】1013: [JSOI2008]球形空间产生器sphere

    [BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...

  7. 【BZOJ】1002:轮状病毒(基尔霍夫矩阵【附公式推导】或打表)

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...

  8. 【BZOJ】【3697】采药人的路径&【3127】【USACO2013 Open】Yin and Yang

    点分治 Orz hzwer 倒是比较好想到点分治……然而在方案统计这里,我犯了两个错误…… 1.我比较傻逼的想的是:通过儿子来更新父亲,也就是统计以x为根的子树中xxxx的路径有多少条……这样转移. ...

  9. 【BZOJ】【3083】遥远的国度

    树链剖分/dfs序 其实过了[BZOJ][4034][HAOI2015]T2以后就好搞了…… 链修改+子树查询+换根 其实静态树的换根直接树链剖分就可以搞了…… 因为其实只有一样变了:子树 如果roo ...

随机推荐

  1. PostgreSQL 入门

    1.连接数设置为:-1.表示链接数不受限制,理论上可以使用无数个链接. 2.使用外键约束,外键用来在两个表的数据之间建立连接,一个表的外键可以为空值,若不为空值,则每一个外键值必须等于另一个表中主键的 ...

  2. hdoj2955 Robberies(01背包)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=2955 题意 有n家银行,每家银行有两个属性:钱数m,概率p,p表示抢这家银行被逮着的概率.有一个人想抢 ...

  3. Ionic Js三:下拉刷新

    在加载新数据的时候,我们需要实现下拉刷新效果,代码如下: HTML 代码 <body ng-app="starter" ng-controller="actions ...

  4. forkcms 开启调试模式

    You can enable debug mode by adding "SetEnv FORK_DEBUG 1" in your virtualhosts file.

  5. React Native之数据存储技术AsyncStorage

    1. 如何将数据存储到本地? 数据存储是开发APP必不可少的一部分,比如页面缓存,从网络上获取数据的本地持久化等,那么在RN中如何进行数据存储呢? RN官方推荐我们在RN中使用AsyncStorage ...

  6. 超实用 Git 使用方式介绍

    都说程序员若是不知道 GitHub 就不是一个合格的程序员,其实这话说的过分了,不知道就学嘛,今天我们就来说说 Git 和 GitHub 到底是什么. 我们在开发软件的时候,常常是需要多人协作完成,这 ...

  7. Jquery的方法(二)

    一.文档操作1.html()和text()的区别 <div id="J_div"><b><i>我是谁</i></b>&l ...

  8. DataTable,List,Dictonary互转,筛选及相关写法

    1.创建自定义DataTable  /// 创建自定义DataTable(一) 根据列名字符串数组, /// </summary> /// <param name="sLi ...

  9. 【推导】Codeforces Round #478 (Div. 2) D. Ghosts

    题意:给你一条直线以及初始时刻这条直线上的一些人的坐标,以及他们的速度矢量.让你对每个人计算他在过去无限远到将来无限远的时间内会与多少人处于同一个点,然后对每个人的这个值求和. 列方程组:两个人i,j ...

  10. java线程系列文章之一(线程的安全性)

    本文来自:高爽|Coder,原文地址:http://blog.csdn.net/ghsau/article/details/7421217,转载请注明. 当我们查看JDK API的时候,总会发现一些类 ...