Imagination is an outcome of what you learned. If you can imagine the world, that means you have learned what the world is about.

Actually we don't know how we see, at lease it's really hard to know, so we can't program to tell a machine to see.

One of the most important part in machine learning is to introspect how our brain learn by subconscious. If we can't introspect, it can be fairly hard to replicate a brain.

Linear Models

Supervised learning of linear models can be divided into 2 phases:

  • Training:

    1. Read training data points with labels \(\left\{\mathbf{x}_{1:n},y_{1:n}\right\}\), where \(\mathbf{x}_i \in \mathbb{R}^{1 \times d}, \ y_i \in \mathbb{R}^{1 \times c}\);
    2. Estimate model parameters \(\hat{\theta}\) by certain learning Algorithms.
      Note: The parameters are the information the model learned from data.
  • Prediction:
    1. Read a new data point without label \(\mathbf{x}_{n+1}\) (typically has never seen before);
    2. Along with parameter \(\hat{\theta}\), estimate unknown label \(\hat{y}_{n+1}\).

1-D example:
First of all, we create a linear model:
\[
\hat{y}_i = \theta_0 + \theta_1 x_{i}
\]
Both \(x\) and \(y\) are scalars in this case.

Then we, for example, take SSE (Sum of Squared Error) as our objective / loss / cost / energy / error function1:

\[
J(\theta)=\sum_{i=1}^n \left( \hat{y}_i - y_i\right)^2
\]

Linear Prediction Model

In general, each data point \(x_i\) should have \(d\) dimensions, and the corresponding number of parameters should be \((d+1)\).

The mathematical form of linear model is:
\[
\hat{y}_i = \sum_{j=0}^{d} \theta_jx_{ij}
\]

The matrix form of linear model is:
\[
\begin{bmatrix}
\hat{y}_1 \\
\hat{y}_2 \\
\vdots \\
\hat{y}_n
\end{bmatrix}=
\begin{bmatrix}
1 & x_{11} & x_{12} & \cdots & x_{1d} \\
1 & x_{21} & x_{22} & \cdots & x_{2d} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n1} & x_{n2} & \cdots & x_{nd}
\end{bmatrix}
\begin{bmatrix}
\theta_0 \\
\theta_1 \\
\theta_2 \\
\vdots \\
\theta_d
\end{bmatrix}
\]
Or in a more compact way:
\[
\mathbf{\hat{y}} = \mathbf{X\theta}
\]
Note that the matrix form is widely used not only because it's a concise way to represent the model, but is also straightforward for coding in MatLab or Python (Numpy).

Optimization Approach

In order to optimize the model prediction, we need to minimize the quadratic cost:
\[
J(\mathbf{\theta}) = \sum_{i=1}^n \left( \hat{y}_i - y_i\right)^2 \\
= \left( \mathbf{y-X\theta} \right)^\mathtt T\left( \mathbf{y-X\theta} \right)
\]

by setting the derivatives w.r.t vector \(\mathbf{\theta}\) to zero since the cost function is strictly convex and the domain of \(\theta\) is convex2.

\[
\begin{align*}\notag
\frac{\partial J(\mathbf{\theta})}{\partial \mathbf{\theta}} &= \frac{\partial}{ \partial \mathbf{\theta} } \left( \mathbf{y-X\theta} \right)^\mathtt T\left( \mathbf{y-X\theta} \right) \\
&=\frac{\partial}{ \partial \mathbf{\theta} } \left( \mathbf{y}^\mathtt T\mathbf{y} + \mathbf{\theta}^\mathtt T \mathbf{X}^\mathtt T\mathbf{X\theta} -2\mathbf{y}^\mathtt T\mathbf{X\theta} \right) \\
&=\mathbf{0}+2 \left( \mathbf{X}^\mathtt T\mathbf{X} \right)^\mathtt T \mathbf{\theta} - 2 \left( \mathbf{y}^\mathtt T\mathbf{X} \right)^\mathtt T \\
&=2 \left( \mathbf{X}^\mathtt T\mathbf{X} \right) \mathbf{\theta} - 2 \left( \mathbf{X}^\mathtt T\mathbf{y} \right) \\
&\triangleq\mathbf{0}
\end{align*}
\]

So we get \(\mathbf{\hat{\theta}}\) as an analytical solution:
\[
\mathbf{\hat{\theta}} = \left( \mathbf{X}^\mathtt T\mathbf{X} \right)^{-1} \left( \mathbf{X}^\mathtt T\mathbf{y} \right)
\]

After passing by these procedures, we can see that learning is just about to adjust model parameters so as to minimize the objective function.
Thus, the prediction function can be rewrite as:
\[
\begin{align*}\notag
\mathbf{\hat{y}} &= \mathbf{X\hat{\theta}}\\
&=\mathbf{X}\left( \mathbf{X}^\mathtt T\mathbf{X} \right)^{-1} \mathbf{X}^\mathtt T\mathbf{y}
\triangleq \mathbf{Hy}
\end{align*}
\]
where \(\mathbf{H}\) refers to hat matrix because it added hat to \(\mathbf{y}\)

Multidimensional Label \(\mathbf{y_i}\)

So far we have been assuming \(y_i\) to be a scalar. But what if the model have multiple outputs (e.g. \(c\) outputs)? Simply align with \(c\) parameters:
\[
\begin{bmatrix}
y_{11} & \cdots & y_{1c} \\
y_{21} & \cdots & y_{2c} \\
\vdots & \ddots & \vdots \\
y_{n1} & \cdots & y_{nc}
\end{bmatrix}=
\begin{bmatrix}
1 & x_{11} & x_{12} & \cdots & x_{1d} \\
1 & x_{21} & x_{22} & \cdots & x_{2d} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n1} & x_{n2} & \cdots & x_{nd}
\end{bmatrix}
\begin{bmatrix}
\theta_{01} & \cdots & \theta_{0c}\\
\theta_{11} & \cdots & \theta_{1c}\\
\theta_{21} & \cdots & \theta_{2c}\\
\vdots & \ddots & \vdots \\
\theta_{d1}& \cdots & \theta_{dc}
\end{bmatrix}
\]

Linear Regression with Maximum Likelihood

If we assume that each label \(y_i\) is Gaussian distributed with mean \(x_i^{\mathtt{T}} \theta\) and variance \(\sigma^2\):
\[
y_i \sim N(x_i^{\mathtt{T}}\theta, \sigma^2) = \left( 2\pi\sigma^2 \right)^{-1/2} e^{ -\frac{\left( y_i-x_i^{\mathtt{T}}\theta \right)^2}{2\sigma^2} }
\]

Likelihood

With a reasonable i.i.d. assumption over \(\mathbf{y}\), we can decompose the joint distribution of likelihood:
\[
\begin{align*}\notag
p( \mathbf{y}|\mathbf{X,\theta,\sigma^2} ) &= \prod_{i=1}^n {p(y_i|\mathbf{x}_i,\theta,\sigma^2} ) \\
&=\prod_{i=1}^n \left( 2\pi\sigma^2 \right)^{-1/2} e^{ -\frac{\left( y_i-x_i^{\mathtt{T}}\theta \right)^2}{2\sigma^2} } \\
&=\left( 2\pi\sigma^2 \right)^{-n/2} e^{-\frac{\sum_{i=1}^n \left( y_i-x_i^{\mathtt{T}}\theta \right)^2}{2\sigma^2}} \\
&= \left( 2\pi\sigma^2 \right)^{-n/2} e^{-\frac{ (\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta}) } {2\sigma^2}}
\end{align*}\notag
\]

Maximum Likelihood Estimation

Then our goal is to maximize the probability of the label in our Gaussian linear regression model w.r.t. \(\theta\) and \(\sigma\).

Instead of minimizing the cost function SSE (length of blue lines), this time we maximize likelihood (length of green lines) to optimize the model parameters.

Since \(\log\) function is monotonic and can simplify exponent function, here we utilize log-likelihood:
\[
\log p( \mathbf{y}|\mathbf{X,\theta}, \sigma^2 ) = -\frac{n}{2} \log \left( 2\pi\sigma^2 \right) -\frac{ (\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta}) } {2\sigma^2}
\]

MLE of \(\theta\):
\[
\begin{align*}\notag
\frac{\partial {\log p( \mathbf{y}|\mathbf{X,\theta,\sigma^2} )} }{\partial {\theta}} &= \frac{\partial}{\partial \theta} \left[ -\frac{n}{2} \log \left( 2\pi\sigma^2 \right) -\frac{ (\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta}) } {2\sigma^2} \right] \\
&= 0 - \frac{1}{2\sigma^2} \frac{\partial{(\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta})}}{\partial{\theta}} \\
&= -\frac{1}{2\sigma^2} \frac{ \partial{ \left( \mathbf{y}^{\mathtt{T}}\mathbf{y} + \theta^{\mathtt{T}} \mathbf{X}^{\mathtt{T}} \mathbf{X\theta} - 2\mathbf{y}^{\mathtt{T}}\mathbf{X\theta} \right) } }{\partial{\theta}} \\
&= -\frac{1}{2\sigma^2} \left[ 0+ 2\left( \mathbf{X^{\mathtt{T}}X} \right)^{\mathtt{T}}\theta - 2\left( \mathbf{y}^{\mathtt{T}}\mathbf{X} \right)^{\mathtt{T}} \right] \\
&= -\frac{1}{2\sigma^2} \left[ 2\mathbf{X^{\mathtt{T}}X\theta} - 2\mathbf{X}^{\mathtt{T}}\mathbf{y} \right] \triangleq 0
\end{align*}
\]
There's no surprise that the estimation of maximum likelihood is identical to that of least-square method.
\[
\hat\theta_{MLE} = \left( \mathbf{X}^{\mathtt{T}}\mathbf{X} \right)^{-1} \mathbf{X}^{\mathtt{T}} \mathbf{y}
\]

Besides where the "line" is, using MLE with Gaussian will give us the uncertainty, or confidence as another parameter, of the prediction \(\mathbf{\hat y}\)
MLE of \(\sigma^2\):
\[
\begin{align*}\notag
\frac{\partial {\log p( \mathbf{y}|\mathbf{X,\theta}, \sigma^2 )} }{\partial {\sigma}} &= \frac{\partial}{\partial \sigma} \left[ -\frac{n}{2} \log \left( 2\pi\sigma^2 \right) -\frac{ (\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta}) } {2\sigma^2} \right] \\
&= -\frac{n}{2} \frac{1}{2\pi\sigma^2} 4\pi\sigma + 2 \frac{ (\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta}) }{2\sigma^3} \\
&= -\frac{n}{\sigma} + \frac{ (\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta}) }{\sigma^3} \triangleq 0
\end{align*}
\]
Thus, we get:
\[
\begin{align*}\notag
\hat\sigma_{MLE}^2 &= \frac1n (\mathbf{y-X\theta})^{\mathtt{T}} (\mathbf{y-X\theta}) \\
&= \frac1n \sum_{i=1}^n \left(y_i-\mathbf{x}_i^\mathtt{T}\theta \right)^2
\end{align*}
\]
which is the standard estimate of variance, or mean squared error (MSE).
However, this uncertainty estimator does not work very well. We'll see another uncertainty estimator later that is very powerful.

Again, we analytically obtain the optimal parameters for the model to describe labeled data points.

Prediction

Since we have had the optimal parameters \(\left(\theta_{MLE},\sigma_{MLE}^2\right)\) of our linear regression model, making prediction is simply get the mean of the Gaussian given different test data point \(\mathbf x_*\):
\[
\hat y_* = \mathbf x_*^{\mathtt T}\theta_{MLE}
\]
with uncertainty \(\sigma_{MLE}^2\).

Frequentist Learning

Maximum Likelihood Learning is part of frequentist learning.

Frequentist learning assumes there is a truth (true model) of parameter \(\theta_{truth}\) that if we had adequate data, we would be able to recover that truth. The core of learning in this case is to guess / estimate / learn the parameter \(\hat \theta\) w.r.t. the true model given finite number of training data.

Maximum likelihood is essentially trying to approximate model parameter \(\theta_{truth}\) by maximizing likelihood (joint probability of data given parameter), i.e.

Given \(n\) data points \(\mathbf X = [\mathbf x_1, \cdots,\mathbf x_n]\) with corresponding labels \(\mathbf y = [y_1, \cdots, y_n]\), we choose the value of model parameter \(\theta\) that is most probable to generate such data points.

Also note that frequentist learning relies on Law of Large Numbers.

KL Divergence and MLE

Given i.i.d assumption on data \(\mathbf X\) from distribution \(p(\mathbf X|\theta_{true})\):
\[
p(\mathbf X|\theta_{true})=\prod_{i=1}^n p(\mathbf x_i|\theta_{true}) \\
\begin{align*}
\theta_{MLE} &= \arg \underset {\theta}{\max} \prod_{i=1}^n p(\mathbf x_i|\theta) \\
&= \arg \underset {\theta}{\max}\sum_{i=1}^n \log p(\mathbf x_i|\theta)
\end{align*}
\]
Then we add a constant value \(-\sum_{i=1}^n \log p(\mathbf x_i|\theta_{true})\) onto the equation and then divide by the constant number \(n\):
\[
\begin{align*}
\theta_{MLE} &= \arg \underset {\theta}{\max} \frac1 n\sum_{i=1}^n \log p(\mathbf x_i|\theta) -\frac1 n\sum_{i=1}^n \log p(\mathbf x_i|\theta_{true})\\
&= \arg \underset {\theta} {\max} \frac 1 n \log \frac{p(\mathbf x_i|\theta)}{p(\mathbf x_i|\theta_{true})}
\end{align*}
\]

Recall Law of Large Numbers that is: as \(n\rightarrow \infty\),
\[
\frac 1 n\sum_{i=1}^nx_i\rightarrow\int xp(x)\mathrm dx=\mathbb E[x]
\]
where \(x_i\) is simulated from \(p(x)\)

Again, we know from frequentist learning that data point \(\mathbf x_i\sim p(\mathbf x|\theta)\). Hence, as \(n\) goes \(\infty\), the MLE of \(\theta\) becomes
\[
\begin{align*}
\theta_{MLE}&=\arg \underset{\theta}{\max} \int_{\mathbf x} \log \frac{p(\mathbf x|\theta)}{p(\mathbf x|\theta_{true})} p(\mathbf x|\theta_{true}) \mathrm dx \\
&=\arg \underset{\theta}{\min} \int_{\mathbf x} \log \frac{p(\mathbf x|\theta_{true})}{p(\mathbf x|\theta)} p(\mathbf x|\theta_{true}) \mathrm dx \\
&=\arg \underset{\theta}{\min}\ \mathbb E_{p(\mathbf x|\theta_{true})} \left[ \log \frac{p(\mathbf x|\theta_{true})}{p(\mathbf x|\theta)} \right] \\
&=\arg \underset{\theta}{\min}\ \mathrm {KL} \left[ p(\mathbf x|\theta_{true})\ ||\ p(\mathbf x|\theta) \right]
\end{align*}
\]
Therefore, maximizing likelihood is equivalent to minimizing KL divergence.

Entropy and MLE

In the last part, we get
\[
\begin{align*}
\theta_{MLE}&=\arg \underset{\theta}{\min} \int_{\mathbf x} \log \frac{p(\mathbf x|\theta_{true})}{p(\mathbf x|\theta)} p(\mathbf x|\theta_{true}) \mathrm dx \\
&=\arg \underset{\theta}{\min} \int_{\mathbf x} \log p(\mathbf x|\theta_{true}) p(\mathbf x|\theta_{true}) \mathrm dx - \int_{\mathbf x} \log p(\mathbf x|\theta) p(\mathbf x|\theta_{true}) \mathrm dx
\end{align*}
\]
The first integral in the equation above is negative entropy w.r.t. true parameter \(\theta_{true}\), i.e. information in the world , while the second integral is negative cross entropy w.r.t. model parameter \(\theta\) and true parameter \(\theta_{true}\)., i.e. information from model. The equation says, if the information in the world matches information from model, then the model has learned!

Statistical Quantities of Frequentist Learning

There are 2 quantities that frequentist often estimate:

  • bias
  • variance

Refer: CPSC540, UBC
Written with StackEdit.


  1. SSE is known by everyone but works poorly under certain circumstances e.g. if the training data contains some noise (outliers) then the model will be distorted seriously by outliers.

  2. See one of some interesting explanations here

Linear Regression and Maximum Likelihood Estimation的更多相关文章

  1. 似然函数 | 最大似然估计 | likelihood | maximum likelihood estimation | R代码

    学贝叶斯方法时绕不过去的一个问题,现在系统地总结一下. 之前过于纠结字眼,似然和概率到底有什么区别?以及这一个奇妙的对等关系(其实连续才是f,离散就是p). 似然函数 | 似然值 wiki:在数理统计 ...

  2. Maximum Likelihood及Maximum Likelihood Estimation

    1.What is Maximum Likelihood? 极大似然是一种找到最可能解释一组观测数据的函数的方法. Maximum Likelihood is a way to find the mo ...

  3. 最大似然估计 (Maximum Likelihood Estimation), 交叉熵 (Cross Entropy) 与深度神经网络

    最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写 ...

  4. 最大似然估计(Maximum likelihood estimation)(通过例子理解)

    似然与概率 https://blog.csdn.net/u014182497/article/details/82252456 在统计学中,似然函数(likelihood function,通常简写为 ...

  5. 均匀分布(uniform distribution)期望的最大似然估计(maximum likelihood estimation)

    maximum estimator method more known as MLE of a uniform distribution [0,θ] 区间上的均匀分布为例,独立同分布地采样样本 x1, ...

  6. 最大似然预计(Maximum likelihood estimation)

    一.定义     最大似然预计是一种依据样本来预计模型參数的方法.其思想是,对于已知的样本,如果它服从某种模型,预计模型中未知的參数,使该模型出现这些样本的概率最大.这样就得到了未知參数的预计值. 二 ...

  7. 【MLE】最大似然估计Maximum Likelihood Estimation

    模型已定,参数未知 已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值.最大似然估计是建立在这样的思想上:已知某个参数能使这个 ...

  8. 最大似然估计(Maximum likelihood estimation)

    最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:"模型已定,参数未知".简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差 ...

  9. MLE vs MAP: the connection between Maximum Likelihood and Maximum A Posteriori Estimation

    Reference:MLE vs MAP. Maximum Likelihood Estimation (MLE) and Maximum A Posteriori (MAP), are both a ...

随机推荐

  1. 改变文件上传input file类型的外观

    当我们使用文件上传功能时,<input type="file">,但是外观有点不符合口味,如何解决这个问题? <input type="file&quo ...

  2. P3133 [USACO16JAN]无线电联系Radio Contact

    题目描述 Farmer John has lost his favorite cow bell, and Bessie the cow has agreed to help him find it! ...

  3. POJ 3356 水LCS

    题目链接: http://poj.org/problem?id=3356 AGTC Time Limit: 1000MS   Memory Limit: 65536K Total Submission ...

  4. ASP.NET Core多语言 (转载)

    ASP.NET Core中提供了一些本地化服务和中间件,可将网站本地化为不同的语言文化.ASP.NET Core中我们可以使用Microsoft.AspNetCore.Localization库来实现 ...

  5. Linux下onvif客户端获取h265 IPC摄像头的RTSP地址

    1. 设备搜索,去获取webserver 的地址 ,目的是在获取能力提供服务地址,demo:https://www.cnblogs.com/croxd/p/10683429.html 2. GetCa ...

  6. [收藏转]由于CredSSP加密Oracle修正 导致远程桌面报错处理

    原文:https://blog.csdn.net/lanwilliam/article/details/80346792 由于win103月份的一个更新,导致mstsc突然无法连接服务器了,报错如标题 ...

  7. python+soket实现 TCP 协议的客户/服务端中文(自动回复)聊天程序

    [吐槽] 网上的代码害死人,看着都写的言之凿凿,可运行就是有问题. 有些爱好代码.喜欢收藏代码的朋友,看到别人的代码就粘贴复制过来.可是起码你也试试运行看啊大哥 [正文] 昨日修改运行了UDP协议的C ...

  8. Velocity学习2

    Velocity是一个基于java的模板引擎(template engine).它允许任何人仅仅简单的使用模板语言(template language)来引用由java代码定义的对象. 当Veloci ...

  9. 一维码ITF 25简介及其解码实现(zxing-cpp)

    一维码ITF 25又称交插25条码,常用在序号,外箱编号等应用.交插25码是一种条和空都表示信息的条码,交插25码有两种单元宽度,每一个条码字符由五个单元组成,其中二个宽单元,三个窄单元.在一个交插2 ...

  10. 4320: ShangHai2006 Homework

    4320: ShangHai2006 Homework 链接 分析: 分块.对权值模数进行分块,模数小于$\sqrt V$的($V$为权值上界),暴力处理. 模数大于$\sqrt V$的,设模数是k, ...