1、计算的均值和方差是channel的

2、test/predict 或者use_global_stats的时候,直接使用moving average

use_global_stats 表示是否使用全部数据的统计值(该数据实在train 阶段通过moving average 方法计算得到)训练阶段设置为 fasle, 表示通过当前的minibatch 数据计算得到, test/predict 阶段使用 通过全部数据计算得到的统计值

那什么是 moving average 呢:

反向传播:

源码:(注:caffe_cpu_scale 是y=alpha*x ,这里面求滑动均值时候,alpha是滑动系数和的倒数,x是滑动均值和

template <typename Dtype>
void BatchNormLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* bottom_data = bottom[0]->cpu_data();
Dtype* top_data = top[0]->mutable_cpu_data();
int num = bottom[0]->shape(0);
int spatial_dim = bottom[0]->count()/(bottom[0]->shape(0)*channels_); if (bottom[0] != top[0]) {
caffe_copy(bottom[0]->count(), bottom_data, top_data);
} if (use_global_stats_) {
// use the stored mean/variance estimates.
const Dtype scale_factor = this->blobs_[2]->cpu_data()[0] == 0 ?
0 : 1 / this->blobs_[2]->cpu_data()[0];
caffe_cpu_scale(variance_.count(), scale_factor,
this->blobs_[0]->cpu_data(), mean_.mutable_cpu_data());
caffe_cpu_scale(variance_.count(), scale_factor,
this->blobs_[1]->cpu_data(), variance_.mutable_cpu_data());
} else {
// compute mean
caffe_cpu_gemv<Dtype>(CblasNoTrans, channels_ * num, spatial_dim,
1. / (num * spatial_dim), bottom_data,
spatial_sum_multiplier_.cpu_data(), 0.,
num_by_chans_.mutable_cpu_data());
caffe_cpu_gemv<Dtype>(CblasTrans, num, channels_, 1.,
num_by_chans_.cpu_data(), batch_sum_multiplier_.cpu_data(), 0.,
mean_.mutable_cpu_data());
} // subtract mean
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1,
batch_sum_multiplier_.cpu_data(), mean_.cpu_data(), 0.,
num_by_chans_.mutable_cpu_data());
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels_ * num,
spatial_dim, 1, -1, num_by_chans_.cpu_data(),
spatial_sum_multiplier_.cpu_data(), 1., top_data); if (!use_global_stats_) {
// compute variance using var(X) = E((X-EX)^2)
caffe_powx(top[0]->count(), top_data, Dtype(2),
temp_.mutable_cpu_data()); // (X-EX)^2
caffe_cpu_gemv<Dtype>(CblasNoTrans, channels_ * num, spatial_dim,
1. / (num * spatial_dim), temp_.cpu_data(),
spatial_sum_multiplier_.cpu_data(), 0.,
num_by_chans_.mutable_cpu_data());
caffe_cpu_gemv<Dtype>(CblasTrans, num, channels_, 1.,
num_by_chans_.cpu_data(), batch_sum_multiplier_.cpu_data(), 0.,
variance_.mutable_cpu_data()); // E((X_EX)^2) // compute and save moving average
this->blobs_[2]->mutable_cpu_data()[0] *= moving_average_fraction_;
this->blobs_[2]->mutable_cpu_data()[0] += 1;
caffe_cpu_axpby(mean_.count(), Dtype(1), mean_.cpu_data(),
moving_average_fraction_, this->blobs_[0]->mutable_cpu_data());
int m = bottom[0]->count()/channels_;
Dtype bias_correction_factor = m > 1 ? Dtype(m)/(m-1) : 1;
caffe_cpu_axpby(variance_.count(), bias_correction_factor,
variance_.cpu_data(), moving_average_fraction_,
this->blobs_[1]->mutable_cpu_data());
} // normalize variance
caffe_add_scalar(variance_.count(), eps_, variance_.mutable_cpu_data());
caffe_powx(variance_.count(), variance_.cpu_data(), Dtype(0.5),
variance_.mutable_cpu_data()); // replicate variance to input size
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1,
batch_sum_multiplier_.cpu_data(), variance_.cpu_data(), 0.,
num_by_chans_.mutable_cpu_data());
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels_ * num,
spatial_dim, 1, 1., num_by_chans_.cpu_data(),
spatial_sum_multiplier_.cpu_data(), 0., temp_.mutable_cpu_data());
caffe_div(temp_.count(), top_data, temp_.cpu_data(), top_data);
// TODO(cdoersch): The caching is only needed because later in-place layers
// might clobber the data. Can we skip this if they won't?
caffe_copy(x_norm_.count(), top_data,
x_norm_.mutable_cpu_data());
} template <typename Dtype>
void BatchNormLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {
const Dtype* top_diff;
if (bottom[0] != top[0]) {
top_diff = top[0]->cpu_diff();
} else {
caffe_copy(x_norm_.count(), top[0]->cpu_diff(), x_norm_.mutable_cpu_diff());
top_diff = x_norm_.cpu_diff();
}
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
if (use_global_stats_) {
caffe_div(temp_.count(), top_diff, temp_.cpu_data(), bottom_diff);
return;
}
const Dtype* top_data = x_norm_.cpu_data();
int num = bottom[0]->shape()[0];
int spatial_dim = bottom[0]->count()/(bottom[0]->shape(0)*channels_);
// if Y = (X-mean(X))/(sqrt(var(X)+eps)), then
//
// dE(Y)/dX =
// (dE/dY - mean(dE/dY) - mean(dE/dY \cdot Y) \cdot Y)
// ./ sqrt(var(X) + eps)
//
// where \cdot and ./ are hadamard product and elementwise division,
// respectively, dE/dY is the top diff, and mean/var/sum are all computed
// along all dimensions except the channels dimension. In the above
// equation, the operations allow for expansion (i.e. broadcast) along all
// dimensions except the channels dimension where required. // sum(dE/dY \cdot Y)
caffe_mul(temp_.count(), top_data, top_diff, bottom_diff);
caffe_cpu_gemv<Dtype>(CblasNoTrans, channels_ * num, spatial_dim, 1.,
bottom_diff, spatial_sum_multiplier_.cpu_data(), 0.,
num_by_chans_.mutable_cpu_data());
caffe_cpu_gemv<Dtype>(CblasTrans, num, channels_, 1.,
num_by_chans_.cpu_data(), batch_sum_multiplier_.cpu_data(), 0.,
mean_.mutable_cpu_data()); // reshape (broadcast) the above
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1,
batch_sum_multiplier_.cpu_data(), mean_.cpu_data(), 0.,
num_by_chans_.mutable_cpu_data());
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels_ * num,
spatial_dim, 1, 1., num_by_chans_.cpu_data(),
spatial_sum_multiplier_.cpu_data(), 0., bottom_diff); // sum(dE/dY \cdot Y) \cdot Y
caffe_mul(temp_.count(), top_data, bottom_diff, bottom_diff); // sum(dE/dY)-sum(dE/dY \cdot Y) \cdot Y
caffe_cpu_gemv<Dtype>(CblasNoTrans, channels_ * num, spatial_dim, 1.,
top_diff, spatial_sum_multiplier_.cpu_data(), 0.,
num_by_chans_.mutable_cpu_data());
caffe_cpu_gemv<Dtype>(CblasTrans, num, channels_, 1.,
num_by_chans_.cpu_data(), batch_sum_multiplier_.cpu_data(), 0.,
mean_.mutable_cpu_data());
// reshape (broadcast) the above to make
// sum(dE/dY)-sum(dE/dY \cdot Y) \cdot Y
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1,
batch_sum_multiplier_.cpu_data(), mean_.cpu_data(), 0.,
num_by_chans_.mutable_cpu_data());
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num * channels_,
spatial_dim, 1, 1., num_by_chans_.cpu_data(),
spatial_sum_multiplier_.cpu_data(), 1., bottom_diff); // dE/dY - mean(dE/dY)-mean(dE/dY \cdot Y) \cdot Y
caffe_cpu_axpby(temp_.count(), Dtype(1), top_diff,
Dtype(-1. / (num * spatial_dim)), bottom_diff); // note: temp_ still contains sqrt(var(X)+eps), computed during the forward
// pass.
caffe_div(temp_.count(), bottom_diff, temp_.cpu_data(), bottom_diff);
} #ifdef CPU_ONLY
STUB_GPU(BatchNormLayer);
#endif INSTANTIATE_CLASS(BatchNormLayer);
REGISTER_LAYER_CLASS(BatchNorm);
} // namespace caffe

  

BatchNorm caffe源码的更多相关文章

  1. caffe源码学习之Proto数据格式【1】

    前言: 由于业务需要,接触caffe已经有接近半年,一直忙着阅读各种论文,重现大大小小的模型. 期间也总结过一些caffe源码学习笔记,断断续续,这次打算系统的记录一下caffe源码学习笔记,巩固一下 ...

  2. Caffe源码理解2:SyncedMemory CPU和GPU间的数据同步

    目录 写在前面 成员变量的含义及作用 构造与析构 内存同步管理 参考 博客:blog.shinelee.me | 博客园 | CSDN 写在前面 在Caffe源码理解1中介绍了Blob类,其中的数据成 ...

  3. caffe源码阅读

    参考网址:https://www.cnblogs.com/louyihang-loves-baiyan/p/5149628.html 1.caffe代码层次熟悉blob,layer,net,solve ...

  4. Caffe源码中syncedmem文件分析

    Caffe源码(caffe version:09868ac , date: 2015.08.15)中有一些重要文件,这里介绍下syncedmem文件. 1.      include文件: (1).& ...

  5. Caffe源码中math_functions文件分析

    Caffe源码(caffe version:09868ac , date: 2015.08.15)中有一些重要文件,这里介绍下math_functions文件. 1.      include文件: ...

  6. Caffe源码中caffe.proto文件分析

    Caffe源码(caffe version:09868ac , date: 2015.08.15)中有一些重要文件,这里介绍下caffe.proto文件. 在src/caffe/proto目录下有一个 ...

  7. Caffe源码阅读(1) 全连接层

    Caffe源码阅读(1) 全连接层 发表于 2014-09-15   |   今天看全连接层的实现.主要看的是https://github.com/BVLC/caffe/blob/master/src ...

  8. vscode下调试caffe源码

    caffe目录: ├── build -> .build_release // make生成目录,生成各种可执行bin文件,直接调用入口: ├── cmake ├── CMakeLists.tx ...

  9. Caffe源码中common文件分析

    Caffe源码(caffe version:09868ac , date: 2015.08.15)中的一些重要头文件如caffe.hpp.blob.hpp等或者外部调用Caffe库使用时,一般都会in ...

随机推荐

  1. BZOJ2079 [Poi2010]Guilds 【贪心】

    题目链接 BZOJ2079 题解 题意就是黑白染色,要求相邻点存在不同颜色的点 显然从一个点出发,相邻点如果没有染色,染不同颜色,那么一个联通块一定会满足要求 证明:在\(dfs\)树上,每个点父亲和 ...

  2. 移动端图片轮播—swipe滑动插件

    swipe是一个轻量级的移动滑动组件,它可以支持精确的触滑移动操作,能解决移动端对滑动的需求. swipe插件的使用主要有四大块: 一.html <div id='slider' class=' ...

  3. html视频背景

    视频作为网页背景的限制因素 在动手编码实现前,视频作为网页背景的有些问题我们要先考虑清楚: 并不是因为技术上可行你就可以任意使用:作为背景的视频内容必须能增强页面内容的感染力,而不是因为漂亮或技术上很 ...

  4. Python 爬虫入门(二)—— IP代理使用

    上一节,大概讲述了Python 爬虫的编写流程, 从这节开始主要解决如何突破在爬取的过程中限制.比如,IP.JS.验证码等.这节主要讲利用IP代理突破. 1.关于代理 简单的说,代理就是换个身份.网络 ...

  5. pg中删除的页是否仍被访问

    昨天看到微信群中,有人提问:pg对于标记为删除的页,是否会扫描到? 今天做了一下测试,发现如果删除的是表的最后连续的几个页(根据ctid来确定数据插入先后,只讨论有insert的情况)中的数据,最后几 ...

  6. ElasticStack系列之十六 & ElasticSearch5.x index/create 和 update 源码分析

    开篇 在ElasticSearch 系列十四中提到的问题即 ElasticStack系列之十四 & ElasticSearch5.x bulk update 中重复 id 性能骤降,继续这个问 ...

  7. P4644 [Usaco2005 Dec]Cleaning Shifts 清理牛棚

    P4644 [Usaco2005 Dec]Cleaning Shifts 清理牛棚 你有一段区间需要被覆盖(长度 <= 86,399) 现有 \(n \leq 10000\) 段小线段, 每段可 ...

  8. Hadoop生态圈-Hive的自定义函数之UDAF(User-Defined Aggregation Function)

    Hadoop生态圈-Hive的自定义函数之UDAF(User-Defined Aggregation Function) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.

  9. Spring知识总结

    一.Spring简述    Spring是一个分层的JavaSE/EEfull-stack(一站式)轻量级开源框架,Spring致力于提供一种方法管理你的业务对象,Spring的主要目的是使JavaE ...

  10. Java上传文件夹(Jersey)

    背景介绍:公司要在CMS系统上为运营人员提供一个功能供运营人员将做好的活动页面上传到阿里云存储上,上传的内容为一个文件夹,文件夹内部有.html网页,JS文件夹下有JS文件,CSS文件夹下有样式表,I ...