BZOJ3601. 一个人的数论(狄利克雷卷积+高斯消元)及关于「前 $n$ 个正整数的 $k$ 次幂之和是关于 $n$ 的 $k+1$ 次多项式」的证明
题目链接
https://www.lydsy.com/JudgeOnline/problem.php?id=3601
题解
首先还是基本的推式子:
\]
令 \(g(x) = \sum_\limits{i = 1}^x i^d\),那么原式即为 $ \sum_\limits{k |n} \mu(k)k^d g(\frac{n}{k})$。
关于函数 \(g(x)\),这其实是一个关于 \(x\) 的 \(d + 1\) 次多项式。在这里我们作简要证明。也就是我们要证明「前 \(n\) 个正整数的 \(k\) 次幂之和是关于 \(n\) 的 \(k+1\) 次多项式」。这里把我之前的一篇博客中的内容放出来。证明如下:
令 \(S(n, k) = \sum_\limits{i = 1}^{n} i^k\),那么我们的目的无非是要证明 \(S(n, k)\) 与一个关于 \(n\) 的 \(k + 1\) 次多项式存在某种等式关系。我们作如下考虑:
- 我们将两个关于 \(n\) 的 \(k + 1\) 次多项式 \((n + 1)^{k + 1}\) 与 \(n^{k + 1}\) 相减,得到: $$\begin{aligned}(n + 1)^{k + 1}-n^{k + 1} &= \left(\sum_{i = 0}^{k + 1}{\binom{k + 1}{i}}n^i\right) - n^{k + 1} \ &= \sum_{i = 0}^k\binom{k + 1}{i}n^i \end{aligned}$$ 其中,\((n + 1)^{k + 1} = \sum_\limits{i = 0}^{k + 1}\binom{k + 1}{i}n^i\) 用到了二项式定理。
- 多项式 \(n^{k + 1}\)与 \((n - 1)^{k + 1}\) 相减,得到: $$n^{k + 1} - (n - 1)^{k + 1} = \sum_{i = 0}^k \binom{k + 1}{i}(n - 1)^i$$
- \(\cdots\)
- 多项式 \(1^{k + 1}\) 与 \(0^{k + 1}\) 相减,得到 $$1^{k + 1} - 0^{k + 1} = \sum_{i = 0}^k\binom{k + 1}{i}0^i$$
- 将上面所有式子相加,得到 $$(n + 1)^{k + 1} = \sum_{i = 0}^{k}\binom{k + 1}{i}S(n, i)$$
当 \(k = 0\) 时,\(S(n, 0)\) 显然是一个关于 \(n\) 的 \(1\) 次多项式。通过移项,即可得到:对于任意的 \(k(k > 0)\),均满足 \(S(n, k)\) 是一个关于 \(n\) 的 \(k + 1\) 次多项式。
同时,我们还能推广该结论得到:若 \(f(x)\) 是一个关于 \(x\) 的任意 \(k\) 次多项式,\(g(x)\) 满足 \(g(x) = \sum_\limits{i = 1}^{x} f(i)\),那么 \(g(x)\) 也是一个关于 \(x\) 的 \(k + 1\) 次多项式。
其证明显然,我们只需要将 \(f(i)\) 的各次项拆开统计到 \(g(x)\) 中,那么 \(g(x)\) 就是 \(k + 1\) 个形如 \(a \sum_\limits{i = 1}^{x}i^b (0 \leq b \leq k)\) 的关于 \(x\) 的 \(b + 1\) 次多项式的和,即关于 \(x\) 的 \(k + 1\) 次多项式。
既然 \(g(x)\) 已经是一个关于 \(x\) 的 \(d + 1\) 次多项式,那么我们就可以将 \(g(x)\) 写成多项式的一般形式,即:\(g(x) = \sum_\limits{i = 0}^{d + 1}a_{i}x^i\)。由于 \(d \leq 100\),因此每一项的系数 \(a_i\) 可以通过高斯消元求得,复杂度是可接受的。我们将 \(g(x)\) 代入原答案式,得到:
\]
令 \(h_i(x) = \sum_\limits{k | x} \mu(k) k^d \left(\frac{x}{k}\right)^i\),显然,\(h_i\) 是两个积性函数的狄利克雷卷积。因此 \(h_i\) 本身也是一个积性函数,由于 \(n\) 的唯一分解式为 \(n = \prod_\limits{k = 1}^{w} p_k ^{\alpha_k}\),故有 \(h_i(n) = \prod_\limits{k = 1}^w h_i(p_k^{\alpha_k})\)。
考虑如何求单个 \(h_i(p ^{\alpha})\):
\]
由于当 \(j = 0\) 时,\(\mu(p^j) = 1\);当 \(j = 1\) 时,\(\mu(p^j) = -1\);当 \(j > 1\) 时,\(\mu(p^j) = 0\)。故有:
\]
这样,单个 \(h_i(p ^ {\alpha})\) 就能用快速幂在 \(O(\log \alpha)\) 的时间内求出。因此,解决整个问题的时间复杂度为 \(O(d^3 + dw \log \alpha)\)。
代码
#include<bits/stdc++.h>
using namespace std;
const int N = 1e3 + 10, mod = 1e9 + 7;
void add(int& x, int y) {
x += y;
if (x >= mod) {
x -= mod;
}
}
void sub(int& x, int y) {
x -= y;
if (x < 0) {
x += mod;
}
}
int mul(int x, int y) {
return (long long) x * y % mod;
}
int qpow(int v, int p) {
int result = 1;
for (; p; p >>= 1, v = mul(v, v)) {
if (p & 1) {
result = mul(result, v);
}
}
return result;
}
int d, w, p[N], alpha[N], a[N][N];
void get_coefficient() {
int sum = 0;
for (int i = 0; i <= d + 1; ++i) {
add(sum, qpow(i, d));
a[i][d + 2] = sum;
int pow_value = 1;
for (int j = 0; j <= d + 1; ++j) {
a[i][j] = pow_value;
pow_value = mul(pow_value, i);
}
}
for (int i = 0; i <= d + 1; ++i) {
int rev = i;
for (int j = i + 1; j <= d + 1; ++j) {
if (a[j][i]) {
rev = j;
break;
}
}
if (rev != i) {
for (int j = i; j <= d + 2; ++j) {
swap(a[rev][j], a[i][j]);
}
}
for (int j = i + 1; j <= d + 1; ++j) {
int p = mul(a[j][i], qpow(a[i][i], mod - 2));
for (int k = i; k <= d + 2; ++k) {
sub(a[j][k], mul(a[i][k], p));
}
}
}
for (int i = d + 1; ~i; --i) {
for (int j = i + 1; j <= d + 1; ++j) {
sub(a[i][d + 2], mul(a[i][j], a[j][d + 2]));
}
a[i][d + 2] = mul(a[i][d + 2], qpow(a[i][i], mod - 2));
}
}
int g(int i, int j) {
int p_i = p[j], alpha_i = alpha[j];
int c1 = (long long) alpha_i * i % (mod - 1);
int c2 = (c1 + d - i + mod - 1) % (mod - 1);
return (qpow(p_i, c1) - qpow(p_i, c2) + mod) % mod;
}
int main() {
scanf("%d%d", &d, &w);
get_coefficient();
for (int i = 1; i <= w; ++i) {
scanf("%d%d", &p[i], &alpha[i]);
}
int answer = 0;
for (int i = 0; i <= d + 1; ++i) {
int result = a[i][d + 2];
for (int j = 1; j <= w; ++j) {
result = mul(result, g(i, j));
}
add(answer, result);
}
printf("%d\n", answer);
return 0;
}
BZOJ3601. 一个人的数论(狄利克雷卷积+高斯消元)及关于「前 $n$ 个正整数的 $k$ 次幂之和是关于 $n$ 的 $k+1$ 次多项式」的证明的更多相关文章
- [bzoj3601] 一个人的数论 [莫比乌斯反演+高斯消元]
题面 传送门 思路 这题妙啊 先把式子摆出来 $f_n(d)=\sum_{i=1}^n[gcd(i,n)==1]i^d$ 这个$gcd$看着碍眼,我们把它反演掉 $f_n(d)=\sum_{i=1}^ ...
- 【bzoj3601】一个人的数论 莫比乌斯反演+高斯消元
题目描述 题解 莫比乌斯反演+高斯消元 (前方高能:所有题目中给出的幂次d,公式里为了防止混淆,均使用了k代替) #include <cstdio> #include <cstrin ...
- BZOJ 3601 一个人的数论 ——莫比乌斯反演 高斯消元
http://www.cnblogs.com/jianglangcaijin/p/4033399.html ——lych_cys 我还是太菜了,考虑一个函数的值得时候,首先考虑是否积性函数,不行的话就 ...
- JSOI球形空间产生器 (高斯消元)
按照朴素的列方程,可以列出n+1个n元2次方程. 将相邻的两个方程相减就可以得到n个n元1次方程,进行高斯消元就可以了. ..,..] of extended; temp,ans:..] of ext ...
- BZOJ 3270 博物馆 ——概率DP 高斯消元
用$F(i,j)$表示A在i,B在j的概率. 然后很容易列出转移方程. 然后可以高斯消元了! 被一个问题困扰了很久,为什么起始点的概率要加上1. (因为其他博客上都是直接写成-1,雾) 考虑初始状态是 ...
- BZOJ3601 一个人的数论 【数论 + 高斯消元】
题目链接 BZOJ3601 题解 挺神的 首先有 \[ \begin{aligned} f(n) &= \sum\limits_{x = 1}^{n} x^{d} [(x,n) = 1] \\ ...
- 【bzoj3601】一个人的数论 莫比乌斯反演+莫比乌斯函数性质+高斯消元
Description Sol 这题好难啊QAQ 反正不看题解我对自然数幂求和那里是一点思路都没有qwq 先推出一个可做一点的式子: \(f(n)=\sum_{k=1}^{n}[(n,k)=1]k^d ...
- 【BZOJ3601】一个人的数论 高斯消元+莫比乌斯反演
[BZOJ3601]一个人的数论 题解:本题的做法还是很神的~ 那么g(n)如何求呢?显然它的常数项=0,我们可以用待定系数法,将n=1...d+1的情况代入式子中解方程,有d+1个方程和d+1个未知 ...
- BZOJ-1013 球形空间产生器sphere 高斯消元+数论推公式
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3662 Solved: 1910 [Subm ...
随机推荐
- 使用截图工具FastStone Capture
使用截图工具FastStone Capture -谨以此教程献给某位上进的测试人员- FastStone Capture是本人用过的windows平台上最好用的截图工具,界面简洁,功能强大,还支持屏幕 ...
- Python初学者第二十四天 函数进阶(3)生成器
24day 1.列表生成式: 循环模式:[变量(加工后的变量) for 变量 in iterable] print([i for i in range(0,101,2)]) [1,4,9,16,25, ...
- php请求页面将返回的页面发送email
<?php require_once 'CLI_config.php'; require_once dirname(__FILE__).'/../../../../common/framewor ...
- ZT 80-90年代港台300部电视剧 你看过多少?
80-90年代港台300部电视剧 你看过多少? [复制链接] 噗噗 738主题 18精华 万家金领 发消息 发表于 2010-4-27 09:01:02 |显示全部楼层 1.(珍珠传奇) ...
- 【转】彻底理解android中的内部存储与外部存储
我们先来考虑这样一个问题: 打开手机设置,选择应用管理,选择任意一个App,然后你会看到两个按钮,一个是清除缓存,另一个是清除数据,那么当我们点击清除缓存的时候清除的是哪里的数据?当我们点击清除数据的 ...
- virtualbox+vagrant学习-3-Vagrant Share-2-HTTP Sharing
HTTP Sharing Vagrant Share可以创建一个可公开访问的URL端点来访问在Vagrant环境中运行的HTTP服务器.这被称为“HTTP共享”,在使用Vagrant Share时默认 ...
- kendo ui - DropDownList 下拉列表系列
kendo-ui 官网:https://www.telerik.com/documentation 初始化 grid: 引入文件: <link rel="stylesheet" ...
- C#在WinForm中重写ProgressBar控件(带%的显示)
废话少说,直接上码: namespace csPublish { [ToolboxItem(true)] class textProgressBar : System.Windows.Forms.Pr ...
- Spring整合MyBatis(四)MapperFactoryBean 的创建
摘要: 本文结合<Spring源码深度解析>来分析Spring 5.0.6版本的源代码.若有描述错误之处,欢迎指正. 目录 一.MapperFactoryBean的初始化 二.获取 Map ...
- PAT乙级1017
1017 A除以B (20 分) 本题要求计算 A/B,其中 A 是不超过 1000 位的正整数,B 是 1 位正整数.你需要输出商数 Q 和余数 R,使得 A=B×Q+R 成立. 输入格式: 输 ...