Saving James Bond - Hard Version

This time let us consider the situation in the movie "Live and Let Die" in which James Bond, the world's most famous spy, was captured by a group of drug dealers. He was sent to a small piece of land at the center of a lake filled with crocodiles. There he performed the most daring action to escape -- he jumped onto the head of the nearest crocodile! Before the animal realized what was happening, James jumped again onto the next big head... Finally he reached the bank before the last crocodile could bite him (actually the stunt man was caught by the big mouth and barely escaped with his extra thick boot).

Assume that the lake is a 100 by 100 square one. Assume that the center of the lake is at (0,0) and the northeast corner at (50,50). The central island is a disk centered at (0,0) with the diameter of 15. A number of crocodiles are in the lake at various positions. Given the coordinates of each crocodile and the distance that James could jump, you must tell him a shortest path to reach one of the banks. The length of a path is the number of jumps that James has to make.

Input Specification:

Each input file contains one test case. Each case starts with a line containing two positive integers N (<=100), the number of crocodiles, and D, the maximum distance that James could jump. Then N lines follow, each containing the (x, y) location of a crocodile. Note that no two crocodiles are staying at the same position.

Output Specification:

For each test case, if James can escape, output in one line the minimum number of jumps he must make. Then starting from the next line, output the position (x, y) of each crocodile on the path, each pair in one line, from the island to the bank. If it is impossible for James to escape that way, simply give him 0 as the number of jumps. If there are many shortest paths, just output the one with the minimum first jump, which is guaranteed to be unique.

Sample Input 1:

17 15
10 -21
10 21
-40 10
30 -50
20 40
35 10
0 -10
-25 22
40 -40
-30 30
-10 22
0 11
25 21
25 10
10 10
10 35
-30 10

Sample Output 1:

4
0 11
10 21
10 35
 
 

1.题目分析

这个题目就是典型的最短路径问题~

使用BFS对图进行层级遍历,只要在任一层发现可以跳出的话,那么就逆序打印出来全体路径。

至于这个层次的问题,其实很好实现,因为在BFS入队的过程中,是将一个节点的链接节点依此入队。在入队的时候,只要将此节点的步点数加1写入下一层中即可完成层数的累积。

同时,为了完成最后的打印工作,需要使用一个数组,完成类似于链表的工作。每次压入新的节点时,就要将新节点对应的父节点数组值设置为其父节点的index,这样在推出时逆序压入堆栈,再重新打印出来,即可完成逆序打印工作。

有两个小点值得注意,一个是如果007非常牛逼,直接就可以跳出来的情况需要特殊处理一下。

二是按照题目要求,如果存在相同步数的路径,需要选出第一跳最短的那一条路径。为了实现这一功能,我在将鳄鱼节点录入时,先按照距离原点的距离升序排序。这样,在进行BFS的时候,总是先从短距离向长距离遍历,保证了第一跳最短距离的哪条路径最先被发现。

2.伪码实现

P = 007StartPoint;

if (Could Get Out at the StartPoint)

return FirstGetOut;

EnQueue(P,Queue)

while(IsNotEmpty(Queue))

{

P = DeQueue(Queue);

Find All the Point NextP that jump from P

{

if(NextP is not reached)

{

Jumped(NextP) = Jumped(P) + 1

father(NextP) =   P

if(CouldGetOutFrom(NextP))

return NextP;

EnQueue(NextP, Queue)

}

}

}

return CouldNotJumpOut

3. 通过代码:

 #define NONE -1
#define DISK 100000
#define MISTAKE -11
#define FIOUT 5000000 #include <stdio.h>
#include <stdlib.h> static int jumped[][]; void InitialJumped()
{
int i;
int j;
for(i=;i<=;i++)
{
for(j=;j<=;j++)
{
jumped[i][j]=NONE;
}
}
} int IsJumped(int x,int y)
{
if(jumped[x+][y+] != NONE)
{
return ;
}
else
{
return NONE;
}
} void JumpOn(int x,int y,int jumpNum)
{
jumped[x+][y+]= jumpNum;
} int GetJump(int x,int y)
{
return jumped[x+][y+];
} /////////End of Visited ///////////// //////////Begin of Croc////////////// typedef struct Croc{
//location of this Croc
int x;
int y;
int dis;
}tCroc; void SetDis(tCroc* C)
{
C->dis = (C->x)*(C->x) + (C->y)*(C->y);
} int GetDis(tCroc* C)
{
return C->dis;
} //If bond could reach from ori to des.
int Reachable(tCroc* ori,tCroc* des,int step)
{
int oriX;
int oriY;
int desX;
int desY;
int distanceSquare;
int stepSquare; oriX = ori->x;
oriY = ori->y; desX = des->x;
desY = des->y; distanceSquare = (oriX-desX)*(oriX-desX)+(oriY-desY)*(oriY-desY);
stepSquare = step*step; if(stepSquare >= distanceSquare)
{
return ;
}
else
{
return ;
}
} int GetOut(tCroc *ori,int step)
{
if(ori->x + step >= )
{
return ;
}
if(ori->x - step <= -)
{
return ;
}
if(ori->y + step >= )
{
return ;
}
if(ori->y - step <= -)
{
return ;
}
return ;
} //////////End of Croc//////////////// /////////DFS of Croc///////////////// int DFSofCroc(tCroc *ori,tCroc list[],int numOfCroc,int step)
{
int i;
int localStep; JumpOn(ori->x,ori->y,); if((ori->x == )&& (ori->y == ))
{
localStep = step+;
}
else
{
localStep = step;
} if(GetOut(ori,localStep)==)
{
return ;
} for(i = ;i<numOfCroc;i++)
{
if(Reachable(ori,&list[i],localStep)==)
{
if(IsJumped(list[i].x,list[i].y)==NONE)
{
int result;
result = DFSofCroc(&list[i],list,numOfCroc,step);
if(result == )
{
return ;
}
}
}
}
return ;
}
//////////////////End of DFS Croc without COUNT///////////////// /////////////////Begin of queue////////////// typedef struct queueNode{
tCroc * thisCroc;
struct queueNode * nextCroc;
}QNode; typedef struct CrocQueue{
QNode *head;
QNode *tail;
}tCrocQueue; tCrocQueue* InitialQueue()
{
tCrocQueue* temp = malloc(sizeof(tCrocQueue));
temp->head = NULL;
temp->tail = NULL;
return temp;
} void EnQueue(QNode *node,tCrocQueue *Q)
{
if(Q->head == NULL)
{
Q->head = node;
Q->tail = node;
return ;
}
else
{
Q->tail->nextCroc = node;
Q->tail = node;
return;
}
} QNode * DeQueue(tCrocQueue *Q)
{
if(Q->head == NULL)
{
return NULL;
}
else
{
QNode *temp = Q->head;
if(Q->head == Q->tail)
{
Q->head = NULL;
Q->tail = NULL;
}
else
{
Q->head = Q->head->nextCroc;
}
return temp;
}
} int IsQueueEmpty(tCrocQueue *Q)
{
if(Q->head == NULL)
{
return ;
}
else
{
return ;
}
}
////////////////End of queue ///////////////// ////////////////Begin of BFS///////////////// int BFS(tCroc *ori, tCroc list[], int Sum, int step, tCrocQueue *Q, int father[])
{
int count;
int myfather;
myfather = DISK;
count = ;
JumpOn(ori->x,ori->y,count);
if(GetOut(ori,step+)==)
{
return FIOUT;
}
QNode * thisNode = malloc(sizeof(QNode));
thisNode->thisCroc = ori;
EnQueue(thisNode,Q);
while(IsQueueEmpty(Q)==)
{
int i ;
int localStep;
QNode* temp = DeQueue(Q); count = GetJump(temp->thisCroc->x,temp->thisCroc->y); if((temp->thisCroc->x == )&&(temp->thisCroc->y==))
{
localStep = step + ;
myfather = DISK;
}
else
{
localStep = step;
for(i = ; i < Sum ; i++)
{
if((temp->thisCroc->x == list[i].x)&&(temp->thisCroc->y== list[i].y))
{
myfather = i;
break;
}
}
} for(i = ; i < Sum ;i++)
{
if(Reachable(temp->thisCroc,&list[i],localStep)==)
{
if(IsJumped(list[i].x,list[i].y)==NONE)
{
JumpOn(list[i].x,list[i].y,(count+));
father[i] = myfather; if(GetOut(&list[i],step)==)
{
return i;
}
thisNode = malloc(sizeof(QNode));
thisNode->thisCroc = &list[i];
EnQueue(thisNode,Q);
}
}
}
} return NONE;
} ////////////////End of BFS///////////////////
////////////////Begin Stack//////////////////
typedef struct stackNode{
tCroc *thisNode;
struct stackNode * next;
}tStackNode; typedef struct CrocStack{
tStackNode* Top;
tStackNode* Bottom;
}tCrocStack; tCrocStack* InitialStack()
{
tCrocStack * temp = malloc(sizeof(tCrocStack));
temp->Top = NULL;
temp->Bottom = NULL;
return temp;
} void Push(tStackNode *node,tCrocStack * S)
{
if(S->Top == NULL)
{
S->Top = node;
S->Bottom = node;
}
else
{
node->next = S->Top;
S->Top = node;
}
} tStackNode *Pop(tCrocStack *S)
{
if(S->Top == NULL)
{
return NULL;
}
else
{
tStackNode * temp = S->Top;
if(S->Top == S->Bottom)
{
S->Bottom = NULL;
S->Top = NULL;
}
else
{
S->Top = S->Top->next;
}
return temp;
}
} int IsStackEmpty(tCrocStack *S)
{
if(S->Top == NULL)
{
return ;
}
else
{
return ;
}
}
/////////////////End of Stack//////////////// int main()
{
int numOfCrocs;
int step;
int i; InitialJumped();
scanf("%d %d",&numOfCrocs,&step); tCroc crocs[numOfCrocs];
int preCro[numOfCrocs]; //Put all the cordinates X,Y into array
for(i=;i<numOfCrocs;i++)
{
int j;
int tempX;
int tempY;
scanf("%d %d",&tempX,&tempY);
if( tempX > || tempX< - || tempY > || tempY < - )
{
i--;
numOfCrocs--;
continue;
}
crocs[i].x = tempX;
crocs[i].y = tempY;
SetDis(&crocs[i]);
for(j=i-;j>=;j--)
{
if(crocs[j].x == crocs[i].x && crocs[j].y == crocs[i].y)
{
i--;
numOfCrocs--;
j=MISTAKE;
break;
}
}
if(j==MISTAKE)
{
continue;
} for(j=i;j>;j--)
{
if(GetDis(&crocs[j])<GetDis(&crocs[j-]))
{
tCroc temp = crocs[j-];
crocs[j-]=crocs[j];
crocs[j]=temp;
}
else
{
break;
}
}
preCro[i] = NONE;
} // printf("---------------\n");
// for(i=0;i<numOfCrocs;i++)
// {
// printf("%d %d %d\n",crocs[i].x,crocs[i].y,crocs[i].dis);
// }
// printf("---------------\n"); tCroc *Zero = malloc(sizeof(tCroc));
Zero->x = ;
Zero->y = ; tCrocQueue * MyQueue = InitialQueue(); int result; result = BFS(Zero,crocs,numOfCrocs,step,MyQueue,preCro); if(result == NONE)
{
printf("");
return ;
}
else if(result == FIOUT)
{
printf("");
}
else
{
int Dis = GetJump(crocs[result].x,crocs[result].y);
printf("%d\n",Dis+);
} tCrocStack * MyStack = InitialStack();
while(result != DISK)
{
tStackNode *temp = malloc(sizeof(tStackNode));
temp->thisNode = &crocs[result];
Push(temp,MyStack);
result = preCro[result];
} while(IsStackEmpty(MyStack)==)
{
int printX;
int printY;
tStackNode *temp = Pop(MyStack); printX = temp->thisNode->x;
printY = temp->thisNode->y;
printf("%d %d\n",printX,printY);
} // result = DFSofCroc(Zero,crocs,numOfCrocs,step); // if(result == 1)
// {
// printf("Yes");
// }
// else
// {
// printf("No");
// } return ;
}

PAT Mooc datastructure 6-1的更多相关文章

  1. PAT mooc DataStructure 4-2 SetCollection

    数据结构习题集-4-2 集合的运用 1.题目: We have a network of computers and a list of bi-directional connections. Eac ...

  2. PAT MOOC dataStructure 4-1

    数据结构练习 4-1 AVL 树 1. 题目: Input Specification: Each input file contains one test case. For each case, ...

  3. PAT B1080 MOOC期终成绩(C++)

    PAT甲级目录 | PAT乙级目录 题目描述 B1080 MOOC期终成绩 解题思路 可利用 map 将字符串型的学号转换为整型的序号,方便查找.输入全部成绩后,遍历每个学生同时计算最终成绩,然后将成 ...

  4. PAT 乙级 1080 MOOC期终成绩 (25 分)

    1080 MOOC期终成绩 (25 分) 对于在中国大学MOOC(http://www.icourse163.org/ )学习“数据结构”课程的学生,想要获得一张合格证书,必须首先获得不少于200分的 ...

  5. PAT 1080 MOOC期终成绩(25)(STL-map及multiset+思路+测试点分析)

    1080 MOOC期终成绩(25 分) 对于在中国大学MOOC(http://www.icourse163.org/ )学习"数据结构"课程的学生,想要获得一张合格证书,必须首先获 ...

  6. PAT 1080 MOOC期终成绩

    https://pintia.cn/problem-sets/994805260223102976/problems/994805261493977088 对于在中国大学MOOC(http://www ...

  7. PAT Basic 1080 MOOC期终成绩 (25 分)

    对于在中国大学MOOC(http://www.icourse163.org/ )学习“数据结构”课程的学生,想要获得一张合格证书,必须首先获得不少于200分的在线编程作业分,然后总评获得不少于60分( ...

  8. 【PAT】B1080 MOOC期终成绩(25 分)

    还是c++好用,三部分输入直接用相同的方法, 用map映射保存学生在结构体数组中的下标. 结构体保存学生信息,其中期末成绩直接初始化为-1, 注意四舍五入 此题还算简单 #include<ios ...

  9. PAT乙级考前总结(三)

    特殊题型 1027 打印沙漏 (20 分) 题略,感觉有点像大学里考试的题.找规律即可. #include <stdio.h>#include <iostream>using ...

随机推荐

  1. 转载文章----十步完全理解SQL

    转载地址:http://blog.jobbole.com/55086/ 很多程序员视 SQL 为洪水猛兽.SQL 是一种为数不多的声明性语言,它的运行方式完全不同于我们所熟知的命令行语言.面向对象的程 ...

  2. Learn Python The Hard Way ex41中的程序

    import random from urllib import urlopen import sys WORD_URL = "http://learncodethehardway.org/ ...

  3. ArrayList,Vector,LinkedList

    在java.util包中定义的类集框架其核心的组成接口有如下:·Collection接口:负责保存单值的最大父接口 |-List子接口:允许保存重复元素,数据的保存顺序就是数据的增加顺序: |-Set ...

  4. AJAX提交方法(GET)Demon

    AJAX作为一种异步的Javascript程序执行方法,极大的弥补了HTTP协议的不足(HTTP协议为无状态协议),可以无需加载整个页面,只需加载所需数据即可,浏览器内置的XMLHttp对象有open ...

  5. PS 切图

    1.选择要切哪一块 比如:要切取人物图片, 会自动选择所选的图层 打开关闭某个图层 然后在图层上点击右键,选择合并组 然后Ctrl+c复制--ctrl+n新建画板--

  6. android第一行代码-3.activity之间的调用跟数据传递

    前面两节所有应用都是同一个activity中的,是时候讲activity之间交互的操作了,此后会涉及到intent这个概念,这也算一个新的里程碑开始. 主要内容包括intent的使用,以及activi ...

  7. FineUI(专业版)实现百变通知框(无JavaScript代码)!

    博客园已经越来越不公正了,居然说我这篇文章没有实质的内容!! 我其实真的想问哪些通篇几十个字,没任何代码和技术分享,嚷嚷着送书的文章的就能雄霸博客园首页几天,我这篇文章偏偏就为管理员所容不下. 其实我 ...

  8. JS组件系列——图片切换特效:简易抽奖系统

    前言:前两天在网上找组件,无意中发现了我们儿时游戏机效果的“SlotMachine组件”,浏览一遍下来,勾起了博主小时候满满的回忆.于是下定决定要研究下这么一个东西,不得不再次叹息开源社区的强大,原来 ...

  9. iOS开发小技巧--微博项目中的键盘工具条

    微博项目中的键盘工具条 项目中的键盘工具条不能使用inputAccessoryView,因为inputAccessoryView不能实现键盘隐藏的时候,工具条还显示在眼前,如图: 所以,果断决定将工具 ...

  10. jeecg单步调试

    自己没本事写开发平台,用别人的又各种担心,想学着别人弄个单步调试,老是出现这个"source not found"-- 百度各种方法都搞不定,担心是自己安装错了?这个jeecg本身 ...