hdu 1576扩展欧几里得算法
#include<stdio.h>
#define ll long long
/* 2.那么x,y的一组解就是x1*m1,y1*m1,但是由于满足方程的解无穷多个,
在实际的解题中一般都会去求解x或是y的最小正数的值。
以求x为例,又该如何求解呢?还是从方程入手,
现在的x,y已经满足a*x+b*y=m,那么a*(x+n*b)+b*(y-n*a)=m显然也是成立的。
可以得出x+n*b(n=…,-2,-1,0,1,2,…)就是方程的所有x解的集合,
由于每一个x都肯定有一个y和其对应,所以在求解x的时候可以不考虑y的取值。
取k使得x+k*b>0,x的最小正数值就应该是(x+k*b)%b,但是这个值真的是最小的吗??
如果我们将方程最有两边同时除以gcd(a,b),则方程变为a1*x+b1*y=m1,
同上面的分析可知,此时的最小值应该为(x+k*b1)%b1,由于b1<=b,所以这个值一定会小于等于之前的值。
在实际的求解过程中一般都是用while(x<0)x+=b1来使得为正的条件满足,为了更快的退出循环,
可以将b1改为b(b是b1的倍数),并将b乘以一个倍数后再加到x上。*/
ll x,y,q;
void extgcd(ll a,ll b) {
if(b==0) {
x=1;y=0;q=a;
return ;
}
extgcd(b,a%b);
ll temp=x;
x=y;y=temp-a/b*y;
return ;
}
int main() {
ll n,t,b,k;
scanf("%I64d",&t);
while(t--) {
scanf("%I64d%I64d",&n,&b);
extgcd(b,9973);
x=x*n/q;//
k=9973/q;//
x=(x%k+k)%k;//求最小的x
printf("%I64d\n",x%9973);
}
return 0;
}
hdu 1576扩展欧几里得算法的更多相关文章
- 扩展欧几里得算法(extgcd)
相信大家对欧几里得算法,即辗转相除法不陌生吧. 代码如下: int gcd(int a, int b){ return !b ? gcd(b, a % b) : a; } 而扩展欧几里得算法,顾名思义 ...
- noip知识点总结之--欧几里得算法和扩展欧几里得算法
一.欧几里得算法 名字非常高大上的不一定难,比如欧几里得算法...其实就是求两个正整数a, b的最大公约数(即gcd),亦称辗转相除法 需要先知道一个定理: gcd(a, b) = gcd(b, a ...
- 欧几里得算法与扩展欧几里得算法_C++
先感谢参考文献:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 注:以下讨论的数均为整数 一.欧几里得算法(重点是证 ...
- vijos1009:扩展欧几里得算法
1009:数论 扩展欧几里得算法 其实自己对扩展欧几里得算法一直很不熟悉...应该是因为之前不太理解的缘故吧这次再次思考,回看了某位大神的推导以及某位大神的模板应该算是有所领悟了 首先根据题意:L1= ...
- ****ural 1141. RSA Attack(RSA加密,扩展欧几里得算法)
1141. RSA Attack Time limit: 1.0 secondMemory limit: 64 MB The RSA problem is the following: given a ...
- 浅谈扩展欧几里得算法(exgcd)
在讲解扩展欧几里得之前我们先回顾下辗转相除法: \(gcd(a,b)=gcd(b,a\%b)\)当a%b==0的时候b即为所求最大公约数 好了切入正题: 简单地来说exgcd函数求解的是\(ax+by ...
- (light oj 1306) Solutions to an Equation 扩展欧几里得算法
题目链接:http://lightoj.com/volume_showproblem.php?problem=1306 You have to find the number of solutions ...
- 『扩展欧几里得算法 Extended Euclid』
Euclid算法(gcd) 在学习扩展欧几里得算法之前,当然要复习一下欧几里得算法啦. 众所周知,欧几里得算法又称gcd算法,辗转相除法,可以在\(O(log_2b)\)时间内求解\((a,b)\)( ...
- 题解——洛谷P2613 【模板】有理数取余(扩展欧几里得算法+逆元)
题面 题目描述 给出一个有理数 c=\frac{a}{b} ,求 c mod19260817 的值. 输入输出格式 输入格式: 一共两行. 第一行,一个整数 \( a \) .第二行,一个整 ...
随机推荐
- jQuery总结04
1 JavaScript 中的 AJAX 的四个实现步骤分别是? 2 如何处理 XMLHttpRequest 对象的兼容问题? 3 jQuery 中的 AJAX 4 jQuery 选择器包括哪些? 5 ...
- Apache OFBIZ高速上手(二)--MVC框架
继续上一篇博客,本篇博客介绍OFBiz的MVC框架. 1.OFBiz特点 OFBiz最基本的特点是OFBiz提供了一整套的开发基于Java的web应用程序的组件和工具.包含实体引擎.服务引擎.消息引擎 ...
- 第7章 Android中访问网络资源
http://developer.android.com/index.html->https://developer.android.com/index.html https://develop ...
- git 设定全局ignore
创建: 2017/08/08 位置: $HOME/.config/git/ignore git/ignore 要自建 内容 https://github.com/github/gitignore ...
- C# 获取当月有多少天
int days = DateTime.DaysInMonth ( 2009, 9 ); int days = DateTime.DaysInMonth ( DateTime.Now.Year, Da ...
- strcpy自实现
为了避免strcpy源串覆盖问题(P220),自实现strcpy. #include <stdio.h> #include <string.h> #include <as ...
- WebApi中对请求参数和响应内容进行URL编码解码
项目经测试,发现从IE提交的数据,汉字会变成乱码,实验了网上很多网友说的给ajax加上contentType:"application/x-www-form-urlencoded; char ...
- js,jquery中.each()方法遍历如何终止循环
用.each()方法遍历节点的时候,用“return false”只能终止当前循环并跳入下一次循环,并不能终止所有循环.代码如下: $(".days").each(function ...
- Bootstrap3.0的栅格布局系统实现原理
这个标题取的有点奇怪,怪我翻译的有问题吧.英文学平有限,有道词典和google翻译齐上阵是必须的.还好翻译的不是小说,对于技术文章,还是能勉强翻过来的. 本文主要讲解了Bootstrap3.0的栅格布 ...
- 实例化vue发生了什么(详解vue生命周期)
const app = new Vue({ el:"#app', data:{ message:'hello,lifePeriod' }, methods:{ init(){ console ...