题2链接:https://www.luogu.org/problemnew/show/P1935

Description

最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地。据了解,这块土地是一块矩形的区域,可以纵横划分为N×M块小区域。GDOI要求将这些区域分为商业区和工业区来开发。根据不同的地形环境,每块小区域建造商业区和工业区能取得不同的经济价值。更具体点,对于第i行第j列的区域,建造商业区将得到Aij收益,建造工业区将得到Bij收益。

题1 
另外同种的区域连在一起可以得到额外的收益,即如果相邻有K块(显然K不超过4)同种类型的区域,则这块区域能增加k×Cij收益。

上面注意是相同的区域可获得收益,而下面的是不同的区域可获得收益

题2 
另外不同的区域连在一起可以得到额外的收益,即如果区域(I,j)相邻(相邻是指两个格子有公共边)有K块(显然K不超过4)类型不同于(I,j)的区域,则这块区域能增加k×Cij收益。

经过Tiger.S教授的勘察,收益矩阵A,B,C都已经知道了。你能帮GDOI求出一个收益最大的方案么?

我们首先看T1

仔细看题,对于每一块区域我们要选择它是商业区还是工业区。嗯?分成两个?在考虑若是所有的c数组不论该点选怎么都能产生贡献,我们最后减去最小的多算的贡献就好了。

注意这所谓最小的贡献必须建立在每一块区域都被明确的选择了类型上

于是乎,很容易就可以想到求最小的贡献就是直接最小割了

那么如何建图?

(相同的有额外收益) 则源点向所有点连商业区的收益,所有点向汇点连工业区的收益,相邻的点连双向边额外的收益 

答案就是总收益减去最小割

T1就是这样

#include<bits/stdc++.h>
using namespace std; const int inf=1e9+;
const int maxn=+;
int n,m,tot=-,s,t;
int head[maxn*maxn],c[maxn][maxn],chead[maxn*maxn],vis[maxn*maxn];
int l[]={,},r[]={,};
struct EDGE
{
int to,next,cap;
}edge[maxn<<];
inline int read()
{
char ch=getchar();
int s=,f=;
while (!(ch>=''&&ch<='')) {if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<='') {s=(s<<)+(s<<)+ch-'';ch=getchar();}
return s*f;
}
int get(int x,int y)
{
return (x-)*m+y;
}
void add(int x,int y,int z1,int z2)
{
edge[++tot]=(EDGE){y,head[x],z1};
head[x]=tot;
edge[++tot]=(EDGE){x,head[y],z2};
head[y]=tot;
}
bool bfs()
{
memset(vis,,sizeof(vis));
queue <int> q;
vis[s]=;
q.push(s);
while (!q.empty())
{
int k=q.front();q.pop();
for (int i=head[k];i!=-;i=edge[i].next)
{
int y=edge[i].to;
if (!vis[y]&&edge[i].cap)
{
vis[y]=vis[k]+;
q.push(y);
}
}
}
return vis[t]!=;
}
int dfs(int x,int flow)
{
if (x==t||!flow) return flow;
int f,a=;
for (int &i=chead[x];i!=-;i=edge[i].next)
{
int y=edge[i].to;
if (vis[y]==vis[x]+&&(f=dfs(y,min(edge[i].cap,flow)))>)
{
edge[i].cap-=f;
edge[i^].cap+=f;
a+=f;
flow-=f;
if (flow==) break;
}
}
if (a==) vis[x]=-;
return a;
}
int dinic()
{
int ans=;
while (bfs())
{
for (int i=;i<=n*m+;i++) chead[i]=head[i];
ans+=dfs(s,inf);
}
return ans;
}
int main()
{
int ans=;
n=read();m=read();
s=;t=n*m+;
memset(head,-,sizeof(head));
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
{
int x=read();
add(s,get(i,j),x,);
ans+=x;
}
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
{
int x=read();
add(get(i,j),t,x,);
ans+=x;
}
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
c[i][j]=read();
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
for (int k=;k<=;k++)
{
int x1=i+l[k],y1=j+r[k];
if (x1<=||x1>n||y1<=||y1>m) continue;
add(get(i,j),get(x1,y1),c[i][j]+c[x1][y1],c[i][j]+c[x1][y1]);
ans+=(c[i][j]+c[x1][y1]);
}
printf("%d",ans-dinic());
return ;
}

[GDKOI2010] 圈地计划(网络流)的更多相关文章

  1. 【bzoj2132】圈地计划 网络流最小割

    题目描述 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地.据了解,这块土地是一块矩形的区域,可以纵横划 ...

  2. 洛谷$P1935$ [国家集训队]圈地计划 网络流

    正解:最小割 解题报告: 传送门 就文理分科模型嘛$QwQ$?所以就,跑个最小割呗,然后就做完辣?仔细想想细节发现并麻油那么简单嗷$QwQ$ 先考虑如果没有这个$k\cdot C_{i,j}$的贡献就 ...

  3. 【BZOJ】【2132】圈地计划

    网络流/最小割 Orz Hzwer 这类大概是最小割建模中的经典应用吧…… 黑白染色,然后反转黑色的技巧感觉很巧妙!这个转化太神奇了…… /****************************** ...

  4. [BZOJ]2132: 圈地计划 最小割

    圈地计划 Description 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地.据了解,这块土地是一 ...

  5. 【BZOJ2132】圈地计划(最小割)

    [BZOJ2132]圈地计划(最小割) 题面 BZOJ 题解 对我而言,不可做!!! 所以我膜烂了ZSY大佬 他的博客写了怎么做... 这,,...太强啦!! 完全想不到黑白染色之后反着连边 然后强行 ...

  6. 【BZOJ2132】圈地计划 最小割

    [BZOJ2132]圈地计划 Description 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地. ...

  7. bzoj2132: 圈地计划(无比强大的最小割)

    2132: 圈地计划 题目:传送门 简要题意: 给出一个矩阵,一共n*m个点,并给出三个收益矩阵.A矩阵表示这个点建A的可取收益,B矩阵表示这个点建B的可取收益,C矩阵表示如果相邻(有且仅有一条公共边 ...

  8. bzoj2132圈地计划

    bzoj2132圈地计划 题意: 一块土地可以纵横划分为N×M块小区域.于第i行第j列的区域,建造商业区将得到Aij收益,建造工业区将得到Bij收益.而如果区域(i,j)相邻(相邻是指两个格子有公共边 ...

  9. $BZOJ3232$ 圈地游戏 网络流

    正解:最小割+01分数规划 解题报告: 传送门$QwQ$ 感$jio$这个好像是$NOIp2018$集训的时候$cjk$学长讲01分数规划的时候港的,,,?$QwQ$虽然我还是不会嘤 首先看到这个分数 ...

随机推荐

  1. LA 6437 Power Plant (prim最小生成树)

    还是裸的最小生成树 #include<bits/stdc++.h> using namespace std; int T,N,M,P,K,a,b,c; int dist[1020],m[1 ...

  2. nyoj 585 取石子(六) 【Nim】

    取石子(六) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描写叙述 近期TopCoder的PIAOYI和HRDV非常无聊,于是就想了一个游戏,游戏是这种:有n堆石子,两个人 ...

  3. hashmap 循环取出全部值 取出特定的值 两种方法

    //第一种 Iterator menus = menu.iterator(); while(menus.hasNext()) { Map userMap = (Map) menus.next(); S ...

  4. MongoDB(一)——简介

    这两天简单学习了一下MongoDB数据库,属于NoSQL类型数据库的一种,先简单宏观的看一下NoSQL的相关知识和MongoDB的基础知识. NoSQL是Not Only SQL的缩写,它指的是非关系 ...

  5. 箭头函数普通函数this

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. scanf使用与运算符

    scanf接收输入 #include <stdio.h> #include <stdlib.h> // 接收用户输入的小写字母,输出大写字母 int main() { char ...

  7. OKHttp使用简介

    现在android网络方面的第三方库很多,volley,Retrofit,OKHttp等,各有各自的特点,这边博客就来简单介绍下如何使用OKHttp. 梗概 OKHttp是一款高效的HTTP客户端,支 ...

  8. web语义化理解

    含义: Web语义化是指使用语义恰当的标签,使页面有良好的结构,页面元素有含义,能够让人和搜索引擎都容易理解. 为什么要web语义化?如今互联网都到了web2.0的时代了,HTML语言在不断的进化并发 ...

  9. dialog.setCancelable与setCanceledOnTouchOutside的区别

    dialog.setCancelable(false); dialog弹出后会点击屏幕或物理返回键,dialog不消失 dialog.setCanceledOnTouchOutside(false); ...

  10. hiho1116 - 数据结构 线段树(区间合并)

    题目链接 现在有一个有n个元素的数组a1, a2, ..., an. 记f(i, j) = ai * ai+1 * ... * aj. 初始时,a1 = a2 = ... = an = 0,每次我会修 ...