[luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)
题目描述
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.
输入输出格式
输入格式:
第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7
输出格式:
输出最小费用
输入输出样例
输入样例#1:
5 4
3
4
2
1
4
输出样例#1:
1
简单的斜率优化基础题 式子有点长(懒得打)
code:
//By Menteur_Hxy
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <map>
#include <vector>
#include <queue>
#include <set>
#include <ctime>
#define M(a,b) memset(a,(b),sizeof(a))
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
#define LL long long
using namespace std;
inline LL rd() {
LL x=0,fla=1; char c=' ';
while(c>'9'|| c<'0') {if(c=='-') fla=-fla; c=getchar();}
while(c<='9' && c>='0') x=x*10+c-'0',c=getchar();
return x*fla;
}
inline void out(LL x){
int a[25],wei=0;
if(x<0) putchar('-'),x=-x;
for(;x;x/=10) a[++wei]=x%10;
if(wei==0){ puts("0"); return;}
for(int j=wei;j>=1;--j) putchar('0'+a[j]);
putchar('\n');
}
const int N=50010;
const int INF=0x3f3f3f3f;
int n,L;
LL da[N],f[N],s[N],q[N];
double slope(LL k,LL j) {
return (double) (f[j]-f[k]+(da[j]+L)*(da[j]+L)-(da[k]+L)*(da[k]+L))/(2.0*(da[j]-da[k]));
}
int main() {
n=rd();L=rd();L++;
F(i,1,n) da[i]=rd(),da[i]+=da[i-1]+1;
// F(i,1,n) cout<<da[i]<<" ";cout<<endl;
int h=0,t=0;
F(i,1,n) {
while(h<t && slope(q[h],q[h+1])<=da[i]) h++;
int v=q[h];
f[i]=f[v]+(da[i]-da[v]-L)*(da[i]-da[v]-L);
while(h<t && slope(q[t],i)<slope(q[t-1],q[t])) t--;
q[++t]=i;
}
// F(i,1,n) cout<<f[i]<<" ";cout<<endl;
out(f[n]);
return 0;
}
[luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)的更多相关文章
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 11893 Solved: 5061[Submit][S ...
- 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- P3195 [HNOI2008]玩具装箱TOY 斜率优化dp
传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP
题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...
- Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...
- 【BZOJ1010】【HNOI2008】玩具装箱toy (斜率优化DP) 解题报告
题目: 题目在这里 思路与做法: 这题不难想. 首先我们先推出一个普通的dp方程: \(f_i = min \{ f_j+(i-j-1+sum_i-sum_j-L)^2\}\) 然后就推一推式子了: ...
- 『玩具装箱TOY 斜率优化DP』
玩具装箱TOY(HNOI2008) Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊 ...
- [bzoj1010][HNOI2008]玩具装箱toy_斜率优化dp
玩具装箱toy bzoj-1010 HNOI-2008 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...
随机推荐
- ios风格的时间选择插件
1.起因 在上个项目中,客户希望时间选择插件可以是ios风格的那种,但是找了很久,发现并没有用vue的ios风格时间插件,于是自己便自己造了一个轮子. 2.插件效果 3.插件依赖以及安装使用 插件依赖 ...
- [luogu3627 APIO2009] 抢掠计划 (tarjan缩点+spfa最长路)
传送门 Description Input 第一行包含两个整数 N.M.N 表示路口的个数,M 表示道路条数.接下来 M 行,每行两个整数,这两个整数都在 1 到 N 之间,第 i+1 行的两个整数表 ...
- Django 中Admin站点的配置
Admin站点是django提供的一个后台管理页面,可以用来对用户与数据库表数据进行管理. Admin站点配置流程 1.在settings.py文件中INSTALL_APPS列表中添加django.c ...
- Spring学习总结(17)——Spring AOP权限管理
每个项目都会有权限管理系统 无论你是一个简单的企业站,还是一个复杂到爆的平台级项目,都会涉及到用户登录.权限管理这些必不可少的业务逻辑.有人说,企业站需要什么权限管理阿?那行吧,你那可能叫静态页面,就 ...
- POJ 1091
这题确实是好. 其实是求x1*a1+x2*a2+....M*xn+1=1有解的条件.很明显,就是(a1,a2,...M)=1了.然后,可以想象,直接求有多少种,很难,所以,求出选择哪些数一起会不与M互 ...
- 怎样避免使用Intent.FLAG_ACTIVITY_NEW_TASK | Intent.FLAG_ACTIVITY_CLEAR_TASK之后的黑屏问题
在自己的项目中.我须要使用Intent.FLAG_ACTIVITY_NEW_TASK | Intent.FLAG_ACTIVITY_CLEAR_TASK来開始新的activity同一时候移除之前全部的 ...
- openssl之EVP系列之2---对称加密算法概述
openssl之EVP系列之2---对称加密算法概述 ---依据openssl doc/crypto/EVP_EncryptInit.pod和doc/ssleay.txt cipher.doc ...
- 锋利Jquery 第一天
之前一直学习,现在终于有时间来整理一下文档了. 以下文章都是自己学习Jquery 的笔记, 希望能留下痕迹,也希望能帮助到您. 好了开始我的Jquery第一天. 我也是从Hello wrod!开始的 ...
- sql server 授权相关命令
原文:https://blog.csdn.net/hfdgjhv/article/details/83834076 https://www.cnblogs.com/shi-yongcui/p/7755 ...
- 【原创】spring中的事务传播特性
关于spring的传播特性,我对其进行了详细的叙述了下: PROPAGATION_REQUIRED--支持当前事务,如果当前没有事务,就新建一个事务.这是最常见的选择. 比如方法A调用方法B,如果方法 ...