时间管理 Time Management

此RTOS除了可以把你的应用代码作为线程运行,它还可以提供一些时间服务功能,使用这些功能你就可以访问RTOS的一些系统调用。

时间延迟Time Delay

在所有的时间服务功能中,最基本的一个就是延时函数。它可以在你的应用中提供非常简单易用的延时功能。也许你会觉得CMSIS-RTOS已经占用了5k字节的代码量,但是在非RTOS的应用中,我们也常会用到一些延时循环、简单的调度循环等,这些循环功能同样会占用一些字节,而我们的RTOS在这方面可能会占用更少的代码量。

void osDelay(uint32_t millisec)

上面这个调用会导致当前线程进入等待延时状态(WAIT_DELAY),延时时间由用户指定。与此同时调度器将会执行下一个处于准备状态(READY)的线程。

注:在线程的生命周期中,它会进入多种状态。这里一个处于运行状态(RUN)的线程被osDelay阻塞,然后它就会进入等待状态(WAIT)。当延时时间结束时,它就会进入准备状态(READY),调度器就会把它置于运行状态(RUN)。如果它的时间片结束了,它就会返回准备状态(READY)。

当定时时间结束时,线程会离开等待延时状态,进入READY状态。当调度器把线程移入RUNNING状态时,它就会继续运行。如果线程在以后的执行过程中没有任何阻塞调用,在它的时间片结束时就会被置于READY状态,同时另外一个同优先级的线程就会进入运行状态。

等待事件

除了单纯的时间延迟,同样可以使用事件等待让线程暂停并进入等待状态,当有另外一个RTOS事件出现时,就会触发线程继续运行。RTOS事件可以是一个信号,消息或者邮件。如果没有事件出现,就可以osWait()这个API,它有一个毫秒级别的超时机制,可以允许线程的唤醒和继续执行。

osStatus osWait(uint32_t millisec)//RTX不支持此函数

当设定的时间结束,线程就会由WAIT状态进入到READY状态,随后被调度器置于RUN状态。osWait在CMSIS RTOS里面是一个可选API。如果你打算使用这个函数,必须先确定你使用的RTOS是支持的。需要注意的是,CMSIS RTOS目前封装的keil RTX 是不支持这个API的。

通过STM32的simulaiton,我发现他的执行顺序是这样的:首先进入main函数,一系列初始化后,完成osKernelStart (); 后,马上进入led_Thread2,执行到osSemaphoreRelease(sem1);,转到led_Thread1,LED_On(1); osDelay(500);还没开始delay就又转到led_Thread2。恰好线程2又是delay,程序中没什么可执行,索性线程1和线程2就delay了500ms,然后又回到线程1执行led关,等待semaphore。

/*----------------------------------------------------------------------------

    Designers Guide to the Cortex-M Family
Semaphore Example
*----------------------------------------------------------------------------*/
#include "stm32f10x.h"
#include "cmsis_os.h" #include "Board_LED.h" void led_Thread1 (void const *argument);
void led_Thread2 (void const *argument);
osThreadDef(led_Thread1, osPriorityAboveNormal, , ); //note the raised priority for led_thread 1
osThreadDef(led_Thread2, osPriorityNormal, , ); osThreadId T_ledOn;
osThreadId T_ledOff;
/*----------------------------------------------------------------------------
Define the semaphore
*---------------------------------------------------------------------------*/
osSemaphoreId sem1;
osSemaphoreDef(sem1);
/*----------------------------------------------------------------------------
Wait to acquire a semaphore token from sem1 then flash LED 1
*---------------------------------------------------------------------------*/
void led_Thread1 (void const *argument)
{
for (;;)
{
osSemaphoreWait(sem1, osWaitForever);
LED_On();
osDelay();
LED_Off();
}
}
/*----------------------------------------------------------------------------
Flash LED 2 and 'release' a semaphore token to sem1
*---------------------------------------------------------------------------*/
void led_Thread2 (void const *argument)
{
for (;;)
{
LED_On();
osSemaphoreRelease(sem1);
osDelay();
LED_Off();
osDelay();
}
} /*----------------------------------------------------------------------------
Initilise the LED's, Create the semaphore and start the threads
*---------------------------------------------------------------------------*/
int main (void)
{
osKernelInitialize (); // initialize CMSIS-RTOS LED_Initialize ();
sem1 = osSemaphoreCreate(osSemaphore(sem1), );
T_ledOff = osThreadCreate(osThread(led_Thread2), NULL);
T_ledOn = osThreadCreate(osThread(led_Thread1), NULL); osKernelStart (); // start thread execution
}

CMSIS-RTOS 时间管理之时间延迟Time Delay的更多相关文章

  1. liteos时间管理(九)

    1. 时间管理 1.1 概述 1.1.1 概念 时间管理以系统时钟为基础.时间管理提供给应用程序所有和时间有关的服务. 系统时钟是由定时/计数器产生的输出脉冲触发中断而产生的,一般定义为整数或长整数. ...

  2. 【uTenux实验】时间管理(系统时间/周期性处理/警报处理)

    1.系统时间管理 系统时间管理函数用来对系统时间进行操作,是OS的一个基础性的东西.个人认为,设置系统时间和获取系统时间对OS来说基本是可有可无的. uTenux提供了三个系统时间相关API.分别用于 ...

  3. (笔记)Linux内核学习(八)之定时器和时间管理

    一 内核中的时间观念 内核在硬件的帮助下计算和管理时间.硬件为内核提供一个系统定时器用以计算流逝的时间.系 统定时器以某种频率自行触发,产生时钟中断,进入内核时钟中断处理程序中进行处理. 墙上时间和系 ...

  4. linux设备驱动归纳总结(七):1.时间管理与内核延时【转】

    本文转载自:http://blog.chinaunix.net/uid-25014876-id-100005.html linux设备驱动归纳总结(七):1.时间管理与内核延时 xxxxxxxxxxx ...

  5. 《Linux内核设计与实现》读书笔记(十一)- 定时器和时间管理【转】

    转自:http://www.cnblogs.com/wang_yb/archive/2013/05/10/3070373.html 系统中有很多与时间相关的程序(比如定期执行的任务,某一时间执行的任务 ...

  6. Linux内核——定时器和时间管理

    定时器和时间管理 系统定时器是一种可编程硬件芯片.它能以固定频率产生中断.该中断就是所谓的定时器中断.它所相应的中断处理程序负责更新系统时间,还负责执行须要周期性执行的任务. 系统定时器和时钟中断处理 ...

  7. 在项目管理中如何保持专注,分享一个轻量的时间管理工具【Flow Mac版 - 追踪你在Mac上的时间消耗】

    在项目管理和团队作业中,经常面临的问题就是时间管理和优先级管理发生问题,项目被delay,团队工作延后,无法达到预期目标. 这个仿佛是每个人都会遇到的问题,特别是现在这么多的内容软件来分散我们的注意力 ...

  8. RTX——第12章 系统时钟节拍和时间管理

    以下内容转载自安富莱电子: http://forum.armfly.com/forum.php 本章节为大家讲解 RTX 操作系统的时钟节拍和时间管理函数,其中时间管理函数是 RTX 的基本函数,初学 ...

  9. 解析Linux内核的基本的模块管理与时间管理操作---超时处理【转】

    转自:http://www.jb51.net/article/79960.htm 这篇文章主要介绍了Linux内核的基本的模块管理与时间管理操作,包括模块加载卸载函数的使用和定时器的用法等知识,需要的 ...

随机推荐

  1. POJ 1182 食物链 (并查集解法)(详细注释)

    食物链 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 78510   Accepted: 23396 Description ...

  2. 51nod 1101 换零钱 完全背包的变型 动态规划

    题目: 思路: ;i < ; i++){ for(int j = a[i];j <= n; j++){ dp[j] = (dp[j] + dp[j-a[i]])%mod; } } a[i] ...

  3. CSS3———linear-gradient() 线性渐变

    线性渐变linear-gradient() 遇到了这样的css样式 body { height: 100%; background-color: #ffffff; background-image: ...

  4. swift语言点评十七-Designated Initializers and Convenience Initializers

    Swift defines two kinds of initializers for class types to help ensure all stored properties receive ...

  5. 多任务-进程之Queue的进程间通信

    1.经过线程和进程的对比,不难的知道,线程和进程有相当大的区别,如全局变量资源不能够共享. 2.在不同的进程间,如何实现通信呢? 需要提及的一个概念就是Queue,它是一个消息队列,下面通过一个例子来 ...

  6. BZOJ 2560(子集DP+容斥原理)

    2560: 串珠子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 757  Solved: 497[Submit][Status][Discuss] ...

  7. sql知识小记

    1.在sql语句中,单引号嵌套时,使用单引号做转义

  8. 链表(list)--c实现

    做c的开发有1年多了,期间写过c++,感觉基础不够好,补上去,不丢人.o(^▽^)o to better myself. #include <stdio.h> #include <s ...

  9. weak和alias

    一.强符号和弱符号 在C语言中,如果多个模块定义同名全局符号时,链接器认为函数和已初始化的全局变量(包括显示初始化为0)是强符号,未初始化的全局变量是弱符号. 根据这个定义,Linux链接器使用下面的 ...

  10. Android 4.4 KitKat NotificationManagerService使用具体解释与原理分析(二)__原理分析

    前置文章: <Android 4.4 KitKat NotificationManagerService使用具体解释与原理分析(一)__使用具体解释> 转载请务必注明出处:http://b ...